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New Sr isotope data from well-preserved aragonite ammonoid shell material from the Mesozoic are compared
with that from a living Nautilus shell. The prominent negative Sr isotope excursions known from the Middle
Permian, Jurassic and Cretaceous probably have their origins in intensive plate tectonic activity, followed by en-
hanced hydrothermal activity at the mid-ocean ridges (mantle volcanism) which supplied low radiogenic Sr to
seawater. The maximum positive (radiogenic) shift in the lower Mesozoic Sr isotope curve (Lower Triassic
peak) was likely caused by a significant expansion of dry land surfaces (Dabie-Sulu Triassic orogeny) and their
intensive silicate weathering in conditions of extreme warming and aridity in the very end of the Smithian,
followed by warm and humid conditions in the late Spathian, which apparently resulted in a significant oceanic
input of radiogenic Sr through riverine flux. The comparatively high 87Sr/86Sr ratio obtained from the livingNau-
tilus shell is probably a function of both the Alpine orogeny, which was accompanied by significant continental
weathering and input of radiogenic Sr to the oceans, and the weakening of mantle volcanism.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past four decades vast data on Phanerozoic Sr-isotope stra-
tigraphy have been compiled from calcitic and apatite fossil material
and whole-rock samples (e.g., Veizer and Compston, 1974; Brass,
1976; Burke et al., 1982; Hess et al., 1986; Koepnick et al., 1990;
Clements et al., 1993; McArthur et al., 1993, 2000, 2004, 2012, 2016;
Denison et al., 1994, 2003; McArthur, 1994; Jones et al., 1994; Jenkyns
et al., 1995, 2002; Martin and MacDougell, 1995; Veizer et al., 1999;
Zachos et al., 1999; Jones and Jenkyns, 2001; Korte et al., 2003, 2004,
2006; Van Geldern et al., 2006; Wotte et al., 2007; Prokoph et al.,
2008; Wierzbowski, 2013; Madhavaraju et al., 2015). However, only a
few aragonite-preserved fossils, originatingmostly from the Campanian
and upper Maastrichtian of North America (e.g., Cochran et al., 2003,
2016) and the lower Albian of Madagascar (Zakharov et al., 2016)
have been used for this purpose. The benefit of aragonitic fossils in
isotope studies lies in their absence of significant diagenetic alteration.

This paper focuses on someMesozoic Sr isotope oscillations, derived
from the study of well-preserved, aragonitic cephalopod shells. We also
present oxygen and carbon isotope data from ammonoids and other
fossils, and some paleoenvironmental reconstructions.

2. Materials and methods

Material for Sr isotope investigation includes ammonoid shells from
the lower and upper Olenekian and mid Anisian of Arctic Siberia, the
lower Toarcian of Western Switzerland, the upper Callovian and
lower Aptian of the Russian Platform, the upper Santonian and lower
Campanian of North America, and finally a shell of living Nautilus
pompilius Lenne from the Philippines (Fig. 1). Lower Toarcian mollusc
shells from Western Switzerland, as well as some fossils from the
lower Bathonian and lower Callovian of Central Switzerland, upper
Hauterivian of Argentina, and lower Barremian of the Alps were also
utilized for O and C isotope investigations.

The following criteria were used to determine diagenetic alteration:
(1) hand-sample visual indications; (2) percentage of aragonite in
mollusc shells, which were originally represented by 100% aragonite;
(3) presence or lack of diagenetic admixture, determined by X-ray dif-
fraction analysis; (4) the degree of integrity of shell microstructure,
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determined under a scanning electronmicroscope (SEM). We have rec-
ognized four stages of diagenetic alteration in aragonitic mollusc shells
(Zakharov et al., 1975, 2016).

X-ray powder analyses were carried out at the Analytical Centre
(FEGI) in Vladivostok using a desktop X-ray diffractometer MiniFlex II
(Rigaku Firm). SEM and X-ray studies of selected Mesozoic fossils sug-
gest that most of them retain their original shell microstructure, and
thus their original Sr, C and O isotope compositions. X-ray diffraction
analysis reveals the lack of secondary admixtures, including α-SiO2, in
most samples from this area, and 75–100% aragonitic composition of
most of our selected ammonoids, and some bivalve shells.

O and C isotope measurements at the Stable Isotope Laboratory (FEGI
FEB RAN, Vladivostok). Oxygen and carbon isotope measurements were
carried out using a Finnigan MAT-252 (Analytical Centre, FEGI,
Vladivostok). The laboratory gas standard used in the O and C isotope
measurements was calibrated relatively to NBS-19 δ13C = 1.93‰ and
δ18O=−2.20‰ (Coplen et al., 1983). Reproducibility of replicate stan-
dards was always better than 0.1‰.

The following equation was used for palaeotemperature calculation
(Grossman and Ku, 1986): T (C) = 20.6–4.34 (δ18Oaragonite – δw).

In this equation T (C) is the ambient temperature; δ18Oaragonite is
the measured oxygen-isotope value of aragonite (versus VPDB), and
δw (‰) is the ambient water isotope ratio (versus VSMOW). A δw of
−1.0‰ is often assumed to be appropriate for an ice-free world
(e.g., Shackleton and Kennet, 1975; Hudson and Anderson, 1989;
Huber et al., 2002; Pirrie and Marshall, 1990; Price and Hart, 2002;
Lukeneder et al., 2010). It is known that there are definitely ice and
ice-free times during Mesozoic (Price and Passey, 2013; Veizer and
Prokoph, 2015), but intervals investigated in this study correspond to
ice-free times. However, the isotopic composition of Cretaceous seawa-
ter may have varied considerably due to freshwater input and/or
evaporation.

Sr isotope measurements at the Laboratory of Isotope Geochemistry
(IG SB RAS, Irkutsk). Laboratory methods for the Sr isotope analysis
followed instrumental and operating specifications as discussed in
Degryse and Schneider (2008). Material for our Sr isotope investigation,
taken from well preserved cephalopod shells that still exist in their

original aragonitic mineralogy, was obtained by chemical preparation
of straight Sr fractions, using ion-exchange polymers BioRad AG
50W*8, 200–400mesh and BioRad AG50*12, 200–400mesh (Collective
Enjoyment Center of Isotope Geochemical Investigation, Institute of
Geochemistry of Russian Academy of Sciences, Siberian Branch,
Irkutsk).

N50 ng (nanogram) of each sample were loaded onto rhenium
filaments (cathode) and analyzed for 87Sr/86Sr on a Finnigan MAT-
262 seven-collector (Collective Joint Center of Geodynamic and
Geochronology, Institute of Earth Core, Russian Academy of Sciences,
Siberian Branch, Irkutsk) using themulti-dynamic routines that include
a correction for isobaric interference from 87Rb (87Rb/85Rb = 0.386).
The rhenium cathode was previously covered by an activator,
prepared on the basis of Ta2O5. The 88Sr ion current was usually been
equal to 2–3 ∗ 10(−11) А. Data have been normalized to a value of
8.37521 for 88Sr/86Sr.

87Sr/86Sr measurements were made using the following most
common standards: (1) NBS-987 (known earlier as SRM987); and
(2) BCR-2. The 87Sr/86Sr values for these standards are (1) 0.710249
± 8 (2 SD, n = 12); and (2) 0.705011 ± 14 (2 SD, n = 7) respectively,
where SD is standard deviation and n is number of measurements.
External precision (2σ) is typically in the range of ±0.00001 to
±0.00003 (Banner, 2004).

3. 87Sr/86Sr, δ18O and δ13C records

3.1. Cretaceous

Previously, Sr isotope data for the Cretaceous has been obtained
from aragonite-preserved lower Albian Eotetragonites, Desmoceras,
Cleoniceras, and Douvilleiceras shells from Madagascar (87Sr/86Sr =
0.707241–0.707276; Zakharov et al., 2016) and upper Maastrichtian
Sphenodiscus, Hoploscaphites and Discoscaphites shells from North
America (87Sr/86Sr = 0.707699–0.707795; Cochran et al., 2003). We
now add to this data with material from the Russian Platform and
from North America.

Fig. 1. Location of investigated areas: 1, Buur River, Arctic Siberia (Induan–Olenekian boundary beds; 2, Mengilyakh Creek, Olenek River (uppermost Olenekian); 3, Keshin Creek, Taimyr
(mid Anisian); 4, Ryazan area, Russian Platform (upper Callovian); 5, Ulyanovsk area, Russian Platform (lower Aptian); 6, Teysachauxmountain,Western Switzerland (lower Toarcian); 7,
the village of Anwill, Northern Switzerland (Bathonian–Callovian boundary); 8,Madagascar (lower Albian); 9. Dorset, SouthWest Englang (uppermost Berriassian); 10, Vancouver Island,
British Columbia (upper Santonian); 11, Butte Creek, California (lower Campanian); 12, Patagonia (upper Hauterivian); 13, Bohol Island area, Philippines (livingNautilus pompilius Linne).
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Ulyanovsk area, Russian Platform (middle lower Aptian). Sr isotopes
were analyzed from two Deshayesites volgensis Sazonova shells (Fig. 2)
from this locality. Both shells were collected from calcareous-marl con-
cretions in a 3.8–4.0 m thick layer of black bituminous shale (OAE 1a,
also known as the Selli Event) of the Volgensis-Schilovkensis Zone
(Gavrilov et al., 2002; Zakharov et al., 2013a).

Shell 45/96 of Deshayesites volgensis, a middle-sized and silvery-
white (D = 160 mm; 84–100% aragonite) specimen, is characterised
by a comparatively low Sr isotope ratio (87Sr/86Sr = 0.707382) at H =
55 mm (Table S1). δ18O and δ13C values in this shell fluctuate
from −2.59 to −2.24‰ and from −3.8 to −1.97‰, respectively
(Zakharov et al., 2013a). The δ18O values suggest comparatively high
paleotemperatures (25.1–26.8 °C).

Another investigated shell of Deshayesites volgensis (50/96), middle-
sized and silvery-white (D = 61.0 mm; 95–100% aragonite), is also
characterised by a comparatively low Sr-isotope ratio (87Sr/86Sr =
0.707333) at H = 27.5 mm (Table S1). δ18O and δ13C values
in this shell vary between −3.6 to −2.6‰ and −2.8 to −0.6‰,
respectively. The δ18O values of this shell indicate somewhat higher
palaeotemperatures (26.7–30.8 °C).

Vancouver, British Columbia (upper Santonian Haslam Fm.; Ward
et al., 2012). We have analyzed the Sr isotope composition of a mid-
sized, cream-colored ammonoid Pseudoschloenbachia umbulazi (Baily)
shell (shell fragment PS(2); 89–100% aragonite), found in a
calcareous-marl concretion of the Haslam Formation (Yokoyamai
Zone, up to 150 m) in the Brannan Lake area, Vancouver Island. A

Fig. 2. Lower Aptian Volgensis-Shilovkensis Zone; Russian Platform, Ulyanovsk area: Sr-C-, O-isotope and palaeotemperature data. A,Deshayesites volgensis Sasonova, no. 45/96, Ulyanovsk
environs; B, D. volgensis Sasonova, no. 50/96, Kraushi.
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Table 1
Carbon and oxygen isotope analyses of some brachiopod and mollusc shells from Jurassic-Cretaceous deposits of Western Europe and South America (H, height, L, length).

Sample Shell Species
(locality, stage, zone, formation)

Location
(H or L in mm)

Diagenetic alterations δ13C
(VPDB),
‰

δ18O
(VPDB),
‰

T, °C

Diagenetic
stage

Aragonite
(calcite),
%

Admixture
(e.g., α-SiO2)

Colour

HS2–1 HS2 Hildaites serpentinum Buckman
(Western Switzerland, western slope of the Mount
Teysachaux; lower Toarcian; Y.D. Zakharov's coll.)

H = 22? 2nd 83 (17) No Cream 0.32 −2.44 25.98

HS2–2 Same shell Hildaites serpentinum H = 21 2nd 76 (24) α-SiO2

(traces)
Cream 0.37 –-2.77 27.4

HS2–3 Same shell Hildaites serpentinum H = 20.5 2nd 81 (19) No Cream 0.70 −2.40 25.81
HS2–4 Same shell Hildaites serpentinum H = 20 2nd 79 (21) α-SiO2

(traces)
Cream 0.74 −2.57 26.55

HS2–5 Same shell Hildaites serpentinum H = 19.5 2nd 82 (18) No Cream 0.89 −2.43 25.94
HS2–6 Same shell Hildaites serpentinum H = 19.2 2nd 82 (18) α-SiO2

(traces)
Cream 0.85 −2.64 26.85

HS2–7 Same shell Hildaites serpentinum H = 19.0 2nd 81 (19) No Cream 0.89 −2.48 26.16
HS2–8 Same shell Hildaites serpentinum H = 18.5 2nd 75 (25) α-SiO2

(traces)
Cream 0.84 −2.69 29.08

HS2–9 Same shell Hildaites serpentinum H = 18.0 2nd 77 (23) α-SiO2

(traces)
Cream 0.60 −2.75 27.33

HS2–10 Same shell Hildaites serpentinum H = 15.0 2nd 76 (24) α-SiO2

(traces)
Cream −0.93 −3.41 22.49

HS2–11 Same shell Hildaites serpentinum H = 14.5 3rd 67 (33) α-SiO2

(traces)
Cream −0.01 −3.58 30.93

HS2–12 Same shell Hildaites serpentinum H = 12.0 2nd 82 (18) α-SiO2

(traces)
Cream 0.02 −2.91 28.02

HS2–13 Same shell Hildaites serpentinum H = 10.0 – – – Cream 0.05 −3.17 30.19
HS2–14 Same shell Hildaites serpentinum H = 9.5 2nd 78 (22) α-SiO2

(traces)
Cream −0.13 −3.06 28.68

HS2–15 Same shell Hildaites serpentinum H = 9.0 – – – Cream −0.04 −3.07 27.75
HS2–16 Same shell Hildaites serpentinum H = 7.5 2nd 80 (20) α-SiO2

(much)
Cream −0.18 −3.11 28.89

HS2–17 Same shell Hildaites serpentinum H = 7.0 60 α-SiO2

(traces)
Cream −0.21 −3.31 29.79

HS2–18 Same shell Hildaites serpentinum H = 5.0 – – – Cream −0.12 −3.52 30.67
HS2–19 Same shell Hildaites serpentinum H = 4.0 – – – Cream −0.16 −3.68 31.36
HS32 HS32 Hildaites serpentinum

(same locality)
H = 7.0 – – – Cream 0.47 −3.20 29.28

HS7 HS7 Phylloceratidae? gen. et sp. indet.
(same locality)

H = 8.0 2nd 81 α-SiO2

(traces)
Cream −0.24 −2.70 27.11

HS10 HS10 Phylloceratidae? gen. et sp. indet.
(same locality)

H = 9.0 2nd 84 α-SiO2

(traces)
Cream −0.93 −1.63 22.47

HS15 HS15 Phylloceratidae? gen. et sp. indet.
(same locality)

H = 8.9 2nd 79 α-SiO2

(traces)
Cream −0.04 −3.82 31.97

HS29 HS29 Phylloceratidae? gen. et sp. indet.
(same locality)

H = 15.0 – – – Cream 0.46 −2.72 27.20

HS31 HS31 Phylloceratidae? gen. et sp. indet.
(same locality)

H = 5.1 2nd 74 α-SiO2

(traces)
Cream 0.31 −3.13 28.98

HS33 HS33 Phylloceratidae? gen. et sp. indet.
(same locality)

H N 14.0 2nd 92 α-SiO2

(traces)
Cream −0.99 −2.23 25.07

HS 34 HS34 Phylloceratidae? gen. et sp. indet.
(same locality)

H = 11.0 2nd 71 α-SiO2

(traces)
Cream −1.33 −3.57 30.89

HS16 HS16 Unicardium bollense Bassi
(same locality)

H = 18.0 2nd 81 α-SiO2

(traces)
Cream −0.18 −2.95 28.20

HS3 HS3 Unicardium bollense
(same locality)

H = 13.0 – – – Cream −0.97 −3.07 28.72

HS18 HS18 Unicardium bollense
(same locality)

H = 14 2nd 80 α-SiO2

(traces)
Cream 0.05 −3.12 28.93

HS19 HS19 Unicardium bollense
(same locality)

H = 17 2nd 71 α-SiO2

(traces)
Cream −0.05 −3.79 31.84

HS11 HS11 Unicardium bollense
(same locality)

H N 8.0 – – – Cream 0.11 −3.20 29.28

HS27 HS27 Unicardium bollense
(fragment; same locality)

– 2nd 85 α-SiO2

(traces)
Cream −0.54 −2.48 26.16

HS30 HS30 Unicardium bollense
(same locality)

H = 8.0 2nd 86 α-SiO2

(traces)
Cream 0.22 −4.62 35.44

HS12 HS12 Unicardium bollense
(same locality)

H = 10.0 – – – Cream 1.83 −2.81 27.59

HS13 HS13 Solemya voltzi Roemer
(same locality)

H = 7.0 1st 95 α-SiO2

(traces)
Cream 1.65 −2.27 35.24

HS4 HS4 Solemya voltzi Roemer
(same locality)

H = 6.0 2nd 80 (Trace) Cream 1.0 −2.42 25.89

HS14 HS14 Pseudomytiloides? sp.
(same locality)

H N 20.0 2nd 93 α-SiO2

(traces)
Cream 1.25 −5.13 37.66

HS6 HS6 Pseudomytiloides dubius Sowerby (same locality) H = 14.5 2nd 87 (13) α-SiO2

(traces)
Cream 2.15 −5.36 38.67
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sample for Sr isotope analysis (Ps(2)-11) was taken from shell frag-
ments at H = 38.5 mm, which is characterised by comparatively low
Sr-isotope ratio (87Sr/86Sr = 0.707281; Table S1).

Earlier published results (Zakharov et al., 2013b) show that δ18O and
δ13C values in this shell vary between−3.1 to−2.6‰ and from−1.3 to
−2.3‰, respectively. The δ18O data indicates comparatively high
paleotemperatures (26.6–28.8 °C).

California (lower Campanian Chico Fm.; Ward et al., 2012). A frag-
ment of middle-sized, silvery-cream Submortoniceras sp. shell, speci-
men Cal-2 (100% aragonite) from the Chico Formation of the Butte
Creek area, California (Chicoensis Zone) was used for Sr isotope investi-
gation. This shell is also characterised by a comparatively low Sr-isotope
ratio (87Sr/86Sr = 0.707198; Table S1). δ18O and δ13C values vary
between −2.0 to −1.9‰ and 1.0 to 1.2‰, respectively (Zakharov
et al., 2006b). The δ18O values in this shell fragment indicate compara-
tively high paleotemperatures (23.9–24.3 °C).

Additional original O and C isotope data obtained from some Lower-
Middle Jurassic and Early Cretaceous fossils (51 samples) from western
Switzerland (lower Bathonian Klingneu Fm.; Hostettler, 2014), north-
ern Switzerland (uppermost Bathonian–lowermost Callovian Anwil
bed; Etter, 2014b), Santis–massif, Switzerland Alps (lower Barremian
Tierwis Fm.; Kürsteiner, 2014) and west-central Argentina (upper
Hauterivian Agrio Fm.; Lazo et al., 2014) are given in Table 1.

3.2. Other intervals investigated

3.2.1. Triassic (Olenekian–Anisian)
Early and Middle Triassic aragonite-preserved ammonoids are

known only from Arctic Siberia (e.g., Mojsisovics, 1886; Zakharov
et al., 1975, 1987, 1999a; Zakharov, 1978). We have investigated the
Sr isotope composition of Triassic ammonoids from three localities in
Arctic Siberia: (1) Buur River (Olenek River basin); (2) Mengilyakh
Creek (right bank of the lower reaches of the Olenek River); and
(3) Keshin Creek, Tsvetkov Cape (eastern Taimyr).

Buur River (lowermost Olenekian). A large Hedenstroemia
hedenstroemi (Keyserling) shell, specimen 890/4–5 (up to 120 mm in

diameter) was found in a calcareous-marl concretion from lowermost
Olenekianmudstoneof theHedenstroemi Zone of this locality. A sample
for Sr-isotope analysis was taken from the best-preserved cream-
colored area (98% aragonite) of its outer whorl, consisting of three
layers: external prismatic, nacreous and inner prismatic (Zakharov
et al., 1987). A comparatively high Sr-isotope ratio (87Sr/86Sr =
0.708043; Table S1) was determined from this sample. According to
our previous study (Zakharov et al., 1999a), this area is characterised
by δ18O of−4‰ and δ13C of −0.3‰ at H = 98 mm.

Mengilyakh Creek (uppermost Olenekian). A medium-sized specimen
of Boreomeekoceras keyserlingi (Mojsisovics), specimen 45/802 (D =
76.0 mm) was found in a calcareous-marl concretion from uppermost
Olenekianmudstone of the Spiniplicatus Zone (Fig. 3). The investigated
cream-colored area (87% aragonite at H=27.0mm) records a very high
Sr-isotope ratio (87Sr/86Sr = 0.709041; Table S1), similar to that of our
living Nautilus pompilius Linne shell from the Philippines. The investi-
gated Boreomeekoceras keyserlingi shell is characterised by lower δ18O
and δ13C values in comparison with those obtained from the
Hedenstroemia hedenstroemi shell: −6.0‰ and −3.3‰, respectively
(Zakharov et al., 1999a).

Keshin Creek (middle Anisian). A small, cream-colored Arctohungarites
sp. shell, specimen 4/816 (up to 30mm in diameter; 88% aragonite) was
collected in a calcareous-marl concretion frommiddle Anisianmudstone
(likely from the Kharaulakhensis Zone). The calculated Sr-isotope ratio
(87Sr/86Sr = 0.707744; Table S1) in this shell is also comparatively
high. This shell is characterised by δ18O and δ13C values of −4.1 and
−2.3‰ at H = 15.8 mm, respectively (Zakharov et al., 1999a).

Following Hallam (1969) and Zakharov et al. (1975), we suggest
that the comparatively low δ18O values of aragonite preserved in our
Olenekian and Anisian ammonoid shells fromArctic Siberia is a function
of the environment that these ammonoids inhabited being within
the Boreal realm under reduced salinity conditions. Our previous
calculations, applying a water correction for approximate computation
of palaeotemperatures in the shallow-water Olenekian-Anisian sea
of Arctic Siberia, give mean values for early and late Olenekian
and Anisian of ?8.8, ?16.3 and ?15.4 °C, respectively (Zakharov et al.,
1999a).

Table 1 (continued)

Sample Shell Species
(locality, stage, zone, formation)

Location
(H or L in mm)

Diagenetic alterations δ13C
(VPDB),
‰

δ18O
(VPDB),
‰

T, °C

Diagenetic
stage

Aragonite
(calcite),
%

Admixture
(e.g., α-SiO2)

Colour

Bs-1 Bs-1 Oyster bivalve
(Switzerland, Auenstein quarry; upper Bajocian,
Stein Fm.; Y.D. Zakharov's coll.)

H = 9 – 0 (100) No White 2.85 −1.56 16.58

Bs-2 Bs-2 Oyster bivalve
(same locality and same formation)

H = 20 – 0 (100) No White 3.17 −2.31 21.66

Bt-1 Bt-1 Rhynchonellid brachiopod
(Switzerland, Auenstein quarry; lower Bathonian,
Klingnau Fm.; Y.D. Zakharov's coll.)

L = 21 – 0 (100) No White 3.11 −0.09 12.35

Bt-2 Bt-2 Rhynchonellid brachiopod
(same locality, same formation)

L = 21.5 – 0 (100) No White 2.08 −2.88 24.28

C-1 C-1 Terebratulid brachiopods
(three shells) (Switzerland, Anwil; lowermost
Callovian, Anwil-Bank; Y.D. Zakharov's coll.)

L = 6–8 – 0 (100) No Silvery-white 0.02 −1.38 17.59

C-2 C-2 Terebratulid brachiopod (same locality) L = 17 – 0 (100) No Silvery-white 1.78 −0.97 15.88
C-4-1 C-4 Oyster bivalve (same locality) L = 15 – 0 (100) No Silvery-white 2.18 −0.61 14.41
C-4-2 Same shell Oyster bivalve (same locality) L = 24 – 0 (100) No Silvery-white 2.65 −0.53 14.00
C-4-3 Same shell Oyster bivalve (same locality) L = 35 – 0 (100) No Silvery-white 2.38 −041 13.61
C-4-4 Same shell Oyster bivalve (same locality) L = 45 – 0 (100) No Silvery-white 2.54 −0.62 14.45
C-4-5 Same shell Oyster bivalve (same locality) L-53 – 0 (100 No Silvery-white 1.87 −1.31 17.30
Ht-2 Ht-2 Undetermined bivalve shell, fragment

(Patagonia; upper Hauterivian, Riccardii Zone,
Agrio Fm.; Y.D. Zakharov's coll.)

H N 40 – 0 (100) No White 1.57 −2.06 20.55

Br-1 Br-1 Exogyra sp.
(Alps, Pillar 2 area, Locality Tierwis; lower
Barremian, Tierwis Fm., Altmann Member;
Y.D. Zakharov's coll.)

H N 100 – 0 (100) No Light grey 1.82 −1.56 18.36
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3.2.2. Jurassic
We have investigated the Sr isotope composition of Jurassic ammo-

noids from the following localities in Europe: (1) Western Switzerland
in the Pre-Alps area; and (2) the Ryazan area on the Russian Platform.

Western slope of the Mount Teysachaux, Switzerland (lower Toarcian
Levisoni to Falciferum zones). The lower Toarcian ammonoids Hildaites
serpentinum Buckman (Fig. 3), Harpoceras falciferum Sowerby and
Phylloceratidae? gen. et sp. indet. are well known from the 10 m thick
organic-rich “Posidonia Shale”, or “Posidonienschiefers” in Western
Switzerland (Etter, 2014a). These sequences record the Toarcian
OAE, also known as the Posidonienschifer Event. Ammonoids were
found in association with the bivalves Bositra sp. (=“Posidonia” sp.),
Pseudomytiloides dubius Sowerby, Unicardium sp., and Solemya voltzi
Roemer.

Data from SEMandX-ray analyses (Fig. 4; Table S1) indicate that our
cephalopod and bivalvemollusc shells, collected in this locality, are suit-
able for isotopic investigation.

Sr isotope results were obtained from two samples, taken from sev-
eral ammonoid shells collected at this locality: (1) sampleHS1 (material
from eight cream-colored Hildaites serpentinum shells, 20–50mm in di-
ameter; about 74.0% aragonite with traces of α-SiO2); and (2) sample
HF1 (material from 10 cream-colored Harpoceras falciferum shells, 20–
40 mm in diameter, about 79.0% aragonite with traces of α-SiO2). The
Sr isotope ratios, obtained from samples HS1 andHF1 are comparatively
low: 0.707300 and 0.707382, respectively (Table S1). Other isotope data
obtained from lower Toarcian cephalopod and bivalve molluscs of this
locality are given in Table 1, revealing, in particular, comparatively
high palaeotemperature of their living environment (25.2–32.0 °C).

Ryazan area (lower upper Callovian). Sr isotope data have been ob-
tained from a Callovian Procerites funatus Oppel, specimen 55-1 from
the Elatma River (Fig. 3). It is a mid-sized (38 mm in diameter),
silvery-white shell. The Sr-isotope ratio in material taken at H =
10 mm is comparatively low (87Sr/86Sr = 0.707429; Table S1). δ18O
and δ13C values have been obtained earlier from lower upper Callovian
Cosmoceras aculatum Michailov (silvery-white shell, 100% aragonite),
also from the Ryazan area. They are −1.3 and 3.3‰, respectively
(Zakharov et al., 2006d), and indicate a palaeotemperature of 21.0 °C.

3.2.3. Holocene
We have analyzed the Sr isotope ratio in living Nautilus pompilius

Linne from a shell that was collected in the Philippines (Bohol Island
area). The investigatedNautilus shell, 101.2 mm in diameter, containing
27 septa, was caught at depth of about 180–250 m. The Sr isotope data
was obtained from sample (S-23) taken from septum23 at H=270mm
(87Sr/86Sr = 0.709148; Fig. 3; Table S1).

Our previous δ18O data (Zakharov et al., 2006a) suggests short-term
vertical migration of this individual with an amplitude of several tens of
meters. Just after hatching it likely lived in shallowwater, following by a
gradualmigration to cooler, deeperwaters. Thus, when it was a juvenile
formwith nine septa in its shell, it sank to a depth of about 200 mwith
temperature of water warmer than 16.8 °C. After building the 10th and
11th septa, it continued to sink, ultimately to a depth of about 300 m
during formation of the 26th septum (water temperature of 13.7 °C).
Septum 23 was secreted at temperature about 14 °C (δ18O = 1.6‰;
δ13C = 0.6‰).

Fig. 3. Some investigated cephalopod shells: 1, Boreomeekoceras keyserlingi (Mojsisovics), Mengilyakh Creek, 45/802, Olenek River, uppermost Olenekian, Spiniplicatus Zone; 2, Procerites
funatus Oppel, 55/1, Russian Platform, Ryazan area, Elatma River, upper Callovian; 3, Hildaites serpentinum Buckman, HS/2, Teysachaux mountain, Western Switzerland; lower Toarcian,
“Posidonia Shale”; 4, living Nautilus pompilius Linne, Bohol Island area, Philippines. Scale bars = 10 mm.
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4. Discussion

4.1. N isotope cycles

According to Algeo et al. (2014), the Phanerozoic δ15Nsed curve has a
strong relationship with first-order climate cycles, with low values oc-
curring during the greenhouse climate modes of the Cretaceous, as
well asmid-Jurassic andmid-Permian and high values occurring during
the icehouse climate modes of the mid-Palaeozoic and Cenozoic.
Cretaceous strata are greatly 15N-depleted (−4 to 0‰), whereas
Carboniferous units are highly 15N-enriched (+6 to +14‰). Induan
and lowest Olenekian units in South Primorye (Abrek Bay) are
characterised mostly by positive δ15N values, but higher in the lower
part of the Olenekian the δ15N values are negative (Zakharov et al., in
press), possibly indirectly illustrating a local warming trend during the
early Olenekian.

4.2. Climate (O isotope) cycles

On the basis of published and original data onO isotope composition
of someMesozoic fossils, mentioned above, 8 first-order climate cycles,

represented by temperature maxima and minima, can be recognized in
the Mesozoic (Fig. 5).

First-order Mesozoic temperature maxima occurred in the
following: (1a) late early Olenekian (latest Smithian); (2a) late
Sinemurian; (3a) early Toarcian; (4a) Bathonian; (5a) mid Tithonian;
(6a) early Aptian; (7a) late Cenomanian-early Turonian; (8a) late
Santonian-early Campanian.

They were accompanied apparently by the following first-order
climatic minima: (1b) late Norian; (2b) late Pliensbachian; (3b) late
Bajocian; (4b) Callovian; (5b) latest Barremian; (6b) late Aptian;
(8b) Maastrichtian (Fig. 5).

4.3. C isotope cycles, Oceanic Anoxic Events (OAEs), and oceanic
red-bed facies

Mesozoic OAEs have been documented in both Cretaceous (lower
Aptian OAE 1a, lowermost Albian OAE 1b, lower upper Albian OAE 1c,
latest Albian OAE 1d, uppermost Cenomanian OAE 2, and local
Coniacian-Santonian OAE 3) (e.g., Erbacher, 1994; Wilson and Noris,
2001; Wagreich, 2009, 2012; Aquit et al., 2016) and the Jurassic
(Toarcian OAE; Jones and Jenkyns, 2001). Among these, OAE 1a

Fig. 4. SEM photomicrographs of lower Toarcian ammonoid shells: A, Phyllocreatidae? gen. et sp. indet., HS/29; B,Harpoceras falciferum Sowerby, HS/9; C,Hildaites serpentinum Buckman,
HS/2; Teysachaux mountain, Western Switzerland, lower Toarcian, “Posidonia Shale”.
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(Weissert-event) has received themost research effort. The bituminous
shale member that records OAE 1a in the Ulianovsk area (up to 10.5 m
thick) is located mostly in the upper part of the lower Aptian
Volgensis–Schilovkensis Zone and was formed during a eustatic trans-
gression (Gavrilov et al., 2002) under a warm climate (Zakharov et al.,
2013a). Its lower part is characterised by the negative C isotope
excursion; the positive C isotope excursion has been recognized
somewhat higher up in the stratigraphy, in the lower Aptian Deshayesi–
Tuberculatum Zone (Zakharov et al., 2013a). No benthic taxa were
discovered in the Volgensis–Schilovkensis Zone of the Ulyanovsk area.

Taking into account that the Turonian–Campanian interval was the
main depositional phase of the Cretaceous oceanic red beds (Wang
et al., 2005, 2009; Wagreich, 2009, 2012; Hu et al., 2012), it can be con-
cluded that themain period of development of theOAEs in theMesozoic
(Toarcian–Cenomanian) was followed by the period characterised by
oxygen-rich deep waters in most of the oceans (Turonian–Campanian
red-bed facies [Wang et al., 2005] and upper Campanian methane-
seep facies [Cochran et al., 2016]).

Based on the C isotope composition of living Nautilus and brachio-
pods obtained from thePhilippines (Zakharov et al., 2006a) and informa-
tion on solar activity during the years 1991–1999 (solar cycles 22 and 23;
Gnezdilov, 2004), when the investigated shells were secreted, we sus-
pect, following Alcala-Herrera et al. (1992), that δ13C fluctuations are
mostly connected with fluctuations of phytoplankton bioproductivity,
partly related to oscillations between low and high solar activity
(sunspot cycles).

About 30 positive δ13C excursions have been recognized from differ-
ent stages of the Phanerozoic (Zakharov et al., 2006c, Fig. 62), ten of
them are known in the Cretaceous. The majority of them coincided
with episodes of volcanic activity that are proposed as to have been
one of main sources of excess CO2 (e.g., Weissert and Erba, 2004;
Naafs et al., 2016). The most prominent negative C isotope excursion

occurs globally in the Permian–Triassic boundary beds (e.g., Baud
et al., 1989; Holser et al., 1991).

4.4. Sr isotope cycles

The published Sr-calibration curves for the Phanerozoic are based
mostly on analyses of calcite and apatite fossil material and samples of
whole rock. Our results from aragonite-preserved fossil material with
good diagenetic control are useful for both corroboration of published
Sr data and also for the minor correction of data points in some little-
studied intervals.

The 87Sr/86Sr ratios of recent oceans are considered to be mainly a
mixture of continental and hydrothermal (oceanic) flux (0.7120 and
0.7035, respectively; Davis et al., 2003). Riverine mass flux (continental
flux) is almost certainly higher today than at any time during the
Phanerozoic (Edmond, 1992).

4.4.1. Jurassic-Cretaceous
It has been suggested that themost prominent ophiolite pulses in the

Mesozoic occurred during the Jurassic-Cretaceous (Toarcian–Berriasian
and Aptian–Campanian; e.g., Dilek, 2003). We agree with some authors
(Jenkyns et al., 1995; Jones and Jenkyns, 2001) that the prominent neg-
ative Sr isotope excursions known from the Mesozoic (e.g., Aptian-
Albian and Late Cretaceous) were the result of strong plate tectonic
activity. It might be partly connected with the opening of the Atlantic
Ocean, which was followed by enhanced hydrothermal activity at the
mid-ocean ridges (mantle volcanism) that supplied low radiogenic Sr
to seawater. Most of these events were accompanied by significant
sea-level changes, warming and Oceanic Anoxic Events (OAEs) that co-
incided closely in time. Comparatively low 87Sr/86Sr ratios were calculat-
ed by us from aragonitic ammonoid shells from the mid lower Aptian
(0.707333–0.707382), lower Albian (0.707242–0.707276), upper

Fig. 5.A summary diagram showing variation of isotopic palaeotemperatures during the Late Permian–Late Cretaceous. The difference in the palaeotemperatures calculated from oxygen-
isotopic composition of belemnite rostra and skeletons of most other fossils likely indicate that they were secreted in different depth conditions (mesopelagic and epipelagic zones,
respectively). Temperature maxima: Olenekian (1a), late Sinemurian (2a), early Toarcian (3a), Bathonian (4a), middle Tithonian (5a), early Aptian (6a), late Cenomanian-early
Turonian (7a), late Santonian-early Campanian (8a). Temperature minima: late Norian (1b), late Pliensbachian (2b), late Bajocian (3b), Callovian (4b), latest Barremian (5b), late
Aptian (6b), late Turonian (7b), Maastrichtian (8b). Abbreviated stage, series and period names are: C-W, Changhsingian–Wuchiapingian; I, Induan, O, Olenekian; An, Anisian, La,
Ladinian; Carn, Carnian; Rh, Rhaetian; H, Hettangian; Sin. Sinemurian; Plien, Pliensbachian; Toar, Toarcian; A, Aalenian; Ba, Bajocian; B, Bathonian; C, Callovian; Ox, Oxfordian; Ki,
Kimmeridgian; Tit, Tithonian; Be, Berriasian; Val, Valanginian; Ho, Houterivian; Bar, Barremian; Ce, Cenomanian; T, Turonian; C, Coniacian; S, Santonian; Camp, Campanian; Maastr,
Maastrichtian; L – Lower, Mid, Middle; U, Upper; P, Permian. References: Fritz, 1965; Teiss et al., 1968; Bowen, 1969; Fabricius et al., 1970; Kaltenegger et al., 1971; Teiss and Naidin,
1973; Anderson et al., 1994; Price and Sellwood, 1994; Ditchfield et al., 1994; Huber et al., 1995, 2002; Ditchfield, 1997; Norris and Wilson, 1998; Podlaha et al., 1998; Zakharov et al.,
1999a, 1999b, Zakharov et al., 2001, Zakharov et al., 2006b, 2006c, 2006d, Zakharov et al., 2009, Zakharov et al., 2011, Zakharov et al., 2016, Zakharov et al., 2017a, 2017b; Price et al.,
2000; Malchus and Steuber, 2002; Gröcke et al., 2003; Voigt et al., 2003; McArthur et al., 2004; Price and Mutterlose, 2004; V.A. Zakharov et al., 2005; Lécuyer and Bucher, 2006;
Wierzbowski and Joachimski, 2007; Price and Rogov, 2009; Goudemand et al., 2013; Price and Passey, 2013; Rosales et al., 2004; Wierzbowski and Rogov, 2011; Joachimski et al.,
2012; Sun et al., 2012; Romano et al., 2013; Wierzbowski et al., 2013; Schobben et al., 2014; Grigoryan et al., 2015; Dzyuba et al., 2013, 2017. Palaeotemperature data from Triassic
conodonts are shown by black circles.
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Santonian (0.707333), and lower Campanian (0.707198) (Fig. 6), as well
as from lower Toarcian (0.707300–0.707382) and lower upper Callovian
(0.707429).

At the same time, the relatively higher and more variable 87Sr/86Sr
ratios for some of the aforementioned intervals have been recently
reported from deposits of some local areas, for instance in limestones
of the upper Aptian–lower Albian Mural Formation in Mexico
(0.707479–0.708790); the latter suggest significant weathering of
local granitic provenance (Madhavaraju et al., 2015).

A final consideration that must be taken into account in our study is
the problem of the strontium isotope stratification of the water column
of Phanerozoic marine basins. Some efforts to understand this problem
have beenmade in a study of the Albian of Madagascar (Zakharov et al.,
2016). A gradual decrease of Sr-isotope ratio from 0.707296 to 0.707241
has been discovered in the following ammonoid shells, secreted in habi-
tats from shallow to deeper zones of the water column: Desmoceras
(0.707296), an inhabitant of the upper epipelagic zone; Douvilleiceras
(0.707276), an inhabitant of the same zone; Cleoniceras (0.707275), an in-
habitant of the deeper (likely lower epipelagic zone); and Eogaudryceras
(0.707241), an inhabitant of the deeper, likely upper mesopelagic zone.

4.4.2. Other intervals investigated
The Paleozoic seawater Sr isotope curve reached its lowest equilibri-

um 87Sr/86Sr ratio in the Capitanian before rebounding tomore strongly
radiogenic values during the Permian/Triassic transition (Korte et al.,

2006; McArthur et al., 2012; Kani et al., 2013; Kani et al., in press). The
Capitanian low point may have its origins in the unusually strong
ophiolite activity, taking into account (1) theMiddle Permian Emeishan
activity in South China, generated apparently by the opening of the
Neotethys Ocean along the eastern margin of Gondwana during the
Permian (e.g., Korte et al., 2006); (2) emplacement of contemporaneous
Uralian ophiolites prior to the collision of Baltica-Eastern Europe and
Kazakhstan-Siberia and closure of the Pleionic Ocean during the Late
Permian (e.g., Dilek, 2003) and Siberian Trap activity of Late Permian
age (e.g., Sadovnikov, 2016). As a result, a highly enhanced flux of low
radiogenic Sr to seawater took place during Mid-Late Permian. In an al-
ternative hypothesis, the Capitanian minimum was mainly caused by a
decrease in the continental weathering rate due to the Mid Permian
cooling that may have driven extensive ice-cover over continental
crust to suppress continental flux enriched in high radiogenic Sr into
the Ocean (Kani et al., 2013). Here we concur with the former model,
because the latter is in disagreementwith evidence for a dramatic Ceno-
zoic rise in seawater 87Sr/86Sr that corresponded to times of progressive
cooling and glaciation (François et al., 1993; Jones and Jenkyns, 2001).

On the contrary, the Lower Triassic is characterised by themaximum
upward (more radiogenic) shift in the Sr isotope curve for the entire
Mesozoic (an increase of 87Sr/86Sr ratio from 0.708043 to 0.709041
has been discovered in the Olenekian interval; Fig. 6). This is apparently
due to significant expansion of dry land surfaces, partly because of the
Dabie-Sulu Triassic orogeny in central-eastern China, created by

Fig. 6. Seawater Sr isotope curves: A, variant of McArthur et al. (2012), corrected; B, variant of Jones and Jenkyns (2001), corrected. Abbreviations: Perm, Permian; Neo, Neogene; Be,
Berriasian; Val, Valanginian; Haut, Hauterivian; Bar, Barremian; Cen, Cenomanian; Tur, Turonian; C, Coniacian; S, Santonian; M, Maastrichtian; L.epi.z, Lower epipelagic zone; Mes.z,
Mesopelagic zone; U.epi.z, Upper epipelagic zone.
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northward subduction of the Yangtze cratonal plate beneath the Sino-
Korean craton (Zhang et al., 2009; Hacker et al., 2004; Isozaki et al.,
2017) and their intensiveweathering in conditions of extremewarming
and aridity at the very end of the Smithian, which was followed by the
development of warm and humid conditions in the late Spathian. The
resulting excess weathering likely resulted in a global-scale input of a
significant amount of high radiogenic Sr through riverine flux. Alterna-
tively, the Olenekian maximum recorded in Arctic Siberian might be
partly caused by brackish environments (the Sr isotope composition
of fossils is used by Wierzbowski (2013; Wierzbowski et al., 2013) as
an indicator of palaeosalinity, which needs confirmation).

The comparatively high 87Sr/86Sr ratio (0.709148), obtained by us
from the living Nautilus pompilius shell is probably connected mainly
with both the Alpine orogeny, accompanied by significant continental
weathering and coming of high radiogenic Sr to seawater, and the
weakening of mantle volcanism (Fig. 7).

5. Conclusions

Following (in part) Jones and Jenkyns (2001), we assume that there
is a close temporal correspondence between episodes of increased hy-
drothermal activity at mid-ocean ridges, negative seawater Sr-isotope
excursions, climatic warming and sea level rises, that usually resulted
in the Aptian–Campanian OAEs. According to our data (Figs 5, 6), the
Aptian and Santonian–Campanian Sr-isotope minima seem to be
corresponded to climatic warming (marked as 6a and 8a, respectively),
but Turonian–Coniacian and late Maastrichtian Sr-isotope maxima, in
contrast, to climatic cooling (7b and 8b, respectively), However, there
is no any clear correspondence in general between δ18O and Sr-
isotope records, especially for Late Permian–Jurassic and. Cenozoic
times. The most distinctive feature of the Phanerozoic Sr isotope record

is an exceedingly large swing in 87Sr/86Sr ratio between the Capitanian
minimum (0.706800–707,000 in South Primorye; Kani et al., in press)
and the Olenekian maximum (0.708043–0.709041). This seems to be
mostly a result of enhanced Early–Mid Permian ophiolite activity and,
on the other hand, the significant expansion of dry land surfaces (partly
because of Dabie-Sulu orogeny) and their intensive weathering in
conditions of extreme warming during much of the Early Triassic.
These conditions gave way to warm and humid conditions in the latest
Olenekian, which apparently released a significant amount of high
radiogenic Sr via the riverine flux.

There are some hypotheses of cyclic or pulsating development of
Earth conditions under impact of cosmic factors (e.g., Yepifanov,
2012a, 2012b; Barash, 2015). Data at least on early and late Mesozoic
O and N isotope cycles seem to be in agreement with this idea, taking
into account, for instance, information on long period cycles in the
Earth's climate (galactic seasons). However, suitable information on Sr
isotope cycles of the Earth is too limited in this stage of our knowledge
to discuss on this topic, although periodicity in some processes,
responsible for some fluctuations in seawater 87Sr/86Sr (e.g., mantle
plume activities and orogenic events) inclines us to take interest in it.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.sedgeo.2017.11.011.
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