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Abstract In extant amniotes, the respiratory turbinate is a nasal structure unique to endotherms, birds
and mammals. The presence of this structure is supposedly correlated with their high metabolic rates
and is accordingly potentially informative in evaluating metabolic conditions of fossil forms such as
non-avian dinosaurs. However, data of the position and shape of possible osteological correlates (OCs)
of this structure in extant birds, which are necessary for exploring evidence of the respiratory turbinate
in non-avian dinosaurs, are mostly lacking. Therefore, in the present study, ossification patterns of the
respiratory turbinate among phylogenetically diverse extant birds were examined. We found that the
presence or absence and degree of ossification were mostly phylogeny-dependent and that the positions
of the OCs could vary irrespective of the identity of bones. The latter result suggests that the OCs of the
respiratory turbinate may be recognized as a ridge on the dorsal to dorsolateral walls of the nasal cavity
in non-avian dinosaurs if they indeed possessed this structure.
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Introduction

A structure called the respiratory turbinate is pres-
ent in the nasal cavity of the extant endotherms, i.e.,
mammals and birds (e.g., Lovegrove, 2017). It is a
complex structure protruding into the nasal cavity
and generally a scroll-like shape in birds (Bang,
1971). Because the respiratory turbinate increases the
surface area of the nasal cavity (Jackson and
Schmidt-Nielsen, 1964; Schmidt-Nielsen, 1981), it is
heat
exchanges that compensate extra heat and water

considered enabling efficient and water
losses caused by high lung ventilation rates typical of
endotherms (Hillenius, 1992; 1994; Ruben et al.,
1996; Geist, 2000; Hillenius and Ruben, 2004). In
addition, mammals and birds, which have achieved
endothermy independently from each other, acquired
respiratory turbinate convergently (Witmer, 1995b).
Therefore, the correlation between endothermy and
the presence of the respiratory turbinate appears
fairly tight, making this structure potentially informa-
tive in evaluating the metabolic conditions of amni-
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ote animals, especially fossil forms. Though func-
tional implications of the presence or absence of the
respiratory turbinate in non-avian dinosaurs have
been intensively debated (Bakker, 1992; Ruben et al.,
1996; Paul, 2002; Hillenius and Ruben, 2004), as is
the case with the one in the synapsid lineage (Hille-
nius, 1992; 1994; Crompton et al., 2015), there still
has been no consensus reached on whether non-avian
dinosaurs really possessed it or not. Distinct evidence
of the respiratory turbinate has not yet been found in
specimens of non-avian dinosaurs. However, because
the avian respiratory turbinate is cartilaginous in gen-
eral (Bourke et al., 2014), it is possible that non-
avian dinosaurs possessed a similar condition. If this
is the case, the lack of a fossilized turbinate does not
necessarily indicate that they really lacked one.

In the context of the Extant Phylogenetic Bracket
(EPB) approach for soft-tissue reconstructions in
extinct species, the causal association between soft
tissues and their Osteological Correlates (OCs) in
their extant relatives is crucial (Witmer, 1995a). In
the case of the respiratory turbinate in the avian
lineage, such basic information is mostly lacking
(Bourke et al., 2014). In order to rectify this trend,
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this study examined OCs of this structure in birds
and discussed potential positions of its OCs in the
nasal cavity of fossil taxa on the lineage leading to
birds. Because the avian turbinate rarely ossifies
(Bourke et al., 2014), it is not reasonable to reliably
identify its OCs based solely on observations of dry
skulls. However, some birds possess an ossified tur-
binate (Bang, 1971; Zusi, 1993). Skulls of such
birds were examined in detail to produce reference
data for identifying the positions and form of possi-
ble OCs in non-avian dinosaurs.

Institutional Abbreviations

CM, Carnegie Museum of Natural History, Pitts-
burgh, Pennsylvania, U.S.A.; CMNH, Cleveland
Museum of Natural History, Cleveland, Ohio,
U.S.A.; NSM-PO, National Museum of Nature and
Science, Tsukuba, Ibaraki, Japan; OUVC, Ohio
University Vertebrate Collections, Athens, Ohio,
U.S.A.; YIO, Yamashina Institute for Ornithology,
Abiko, Chiba, Japan.

Materials and Methods

99 species of extant birds belonging to 26 order-
level clades were examined based on dry skulls or
X-ray computed tomographic (CT) scan data sets of
the heads of 112 specimens in total (Table 1). For
each species, the degree of the ossification and
attachment position of the respiratory turbinate were
recorded. In addition, in order to infer the phyloge-
netic timing of turbinate ossification, ancestral state
reconstruction on avian phylogeny was performed
using the parsimony method by Mesquite version
3.61 (Maddison and Maddison, 2019). The tree
topology for the analysis was obtained from the
BirdTree.org website (Jetz et al., 2012, 2014).

Results

The results are summarized in Tables 1 and 2.
Whereas only cartilaginous turbinate was observed
in most major clades, ossified turbinate was present
in Accipitriformes and Psittaciformes, as well as in
a few species in other clades (Table 2). The degree
of ossification of the respiratory turbinate also var-
ied among these clades. In Accipitriformes, turbi-

Table 2. Ratio of the number of species possessing
OCs of the respiratory turbinate or ossified turbi-
nate/the number of the examined species in each
clade. If a single species contained individuals
both with and without an ossified turbinate/ridge, it
was counted for possessing the structure.

Species Ratio
PALEOGNATHAE 1/5
Struthioniformes 0/1
Rheiformes 0/1
Apterygiformes 1/1
Casuariiformes 0/1
Tinamiformes 0/1
NEOGNATHAE 14/94
GALLOANSERES 0/16
Galliformes 0/9
Anseriformes 0/7
NEOAVES 14/78
Caprimulgiformes 0/1
Cuculiformes 0/1
Columbiformes 0/2
Gruiformes 0/6
Phoenicopteriformes 0/1
Charadriiformes 0/8
AEQUORNITHES 2/17
Gaviiformes 0/1
Sphenisciformes 0/1
Procellariiformes 0/8
Ciconiiformes 0/1
Suliformes 0/1
Pelecaniformes 2/5
TELLURAVES 12/42
Accipitriformes 4/6
Strigiformes 0/2
Bucerotiformes 0/2
Coraciiformes 0/3
AUSTRALAVES 8/29
Falconiformes 12
Psittaciformes 5/7
Passeriformes 2/20

nate ossified extensively enough to remain as a
scroll-like structure in the skull across the clade
(Fig. 1A). It protruded from the roof of the bony
nasal cavity. In Psittaciformes, the turbinate did not
ossify but left a ridge as an OC on the roof of the
nasal cavity (Fig. 1B). The examined skull of the
falconiform Falco peregrinus preserved a bony
scroll turbinate projecting into the nasal cavity from
the lateral wall. Although the respiratory turbinate
did not ossify in Pelecaniformes or Passeriformes in
general, Ardea cinerea, Nycticorax nycticorax, Lon-
chura oryzivora and Terpsiphone atrocaudata were
exceptions in leaving bony ridges as OCs (Fig. 1C).
In Paleognathae, Apteryx australis is the exception
in possessing a fully ossified turbinate.

In birds having robustly ossified beaks such as
accipitriforms and psittaciforms, it is hardly possi-
ble to draw clear borders among bones contributing
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A) Gyps bengalensis

NSM-PO 546

B) Ara macao

NSM-PO 492

C) Nycticorax nycticorax

5cm

NSM-PO 746

Fig. 1. Ossified ridges or turbinate in the skulls of Gyps bengalensis (A), Ara macao (B), and Nycticorax nycticorax
(C). The arrow in each whole skull on left side indicates the direction of the close-up view on right side. Abbrevia-
tions: Lrt, left respiratory turbinate; ns, nasal septum; Rrt, right respiratory turbinate.

to the beak, i.e., premaxilla, maxilla, palatine and
nasal. However, their respiratory turbinate appears
to leave ridges or scrolls on the nasal, maxilla or
both among the beak-forming bones (Heilman,
1926; Knutsen, 2007; Jansen, 2008) although the
positions of these structures vary among species.
CT-scan images of heads of the species that were
either found to have the OCs as described above or
belonged to the same order-level clade as such spe-
cies showed that these OCs were indeed associated
with the respiratory turbinate (Fig. 2A). In Paleog-
nathae (Struthio camelus, Rhea americana and
Dromaius novaehollandiae) and some species
belonging to other clades, dry skulls sometimes
maintain ridges on the roof (dp in Fig. 2B). How-

ever, such ridges represent curling edges of the dor-
sal plate of the mesethmoid (Ali ef al., 2008), which
support the lateral wall of the olfactory cavity and
the olfactory turbinate as described in Bourke et al.
(2014). These ridges ossifies more often than the
OCs for the respiratory turbinate. Similar, paired
ridges were present on the roof of the nasal cavity in
Phoebastria nigripes (pr; Fig. 2C). However, these
ridges were not associated with either respiratory or
olfactory turbinate and can be distinguished from
the ridges in other birds observed in this study in the
following aspects. First, the contralateral ridges in
P. nigripes anteriorly merged with each other as
well as with a median septum. This is a condition
that is not present in the ridge associated with the
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A) Melopsittacus undulatus

B) Dromaius novaehollandiae

NSM-PO 388

OUVC 10905

Fig. 2. Cross-sectional CT-scan images showing ossified ridges in the nasal cavity that are either associated with the
respiratory turbinate (A, Melopsittacus undulatus) or not (B and C, Dromaius novaehollandiae and Phoebastria
nigripes, respectively). The dorsal plate of the mesethmoid in D. novaehollandiae supports the lateral wall of the
olfactory cavity and the olfactory turbinate (B) whereas ridges in P. nigripes (termed pseudo-ridges herein) is not
associated with seither respiratory or olfactory turbinate (C). Abbreviations: dp, dorsal plate; Lrt, left respiratory tur-
binate; ns, nasal septum; pr, pseudo-ridge; Rot, right olfactory turbinate; Rrt, right respiratory turbinate.

respiratory turbinate. In addition, they were posi-
tioned much more medially than the ridge support-
ing the respiratory turbinate in other birds. The
position of the paired protrusions supported by
these ridges in P. nigripes suggests that they may
serve the olfactory function as does the olfactory
turbinate (Bang, 1971, fig. 7 [3]).

Discussion

Among extant birds, the degree of ossification of
the respiratory turbinate depends on their phyloge-
netic positions to some extent: it ossifies in most spe-
cies belonging to Accipitriformes and Psittaciformes.
This result may indicate that its ossification is related
to the degree of beak ossification because the latter is
high in Accipitriformes and Psittaciformes. In addi-
tion, the position of the ridge supporting the turbinate
varies among species, ranging from the lateral to the
dorsal walls of the nasal cavity proper, and is appar-
ently not dependent on the homology of the bones,
that is, the ridge may be positioned on the nasal or
maxilla. This may be explained by the fact that the
nasal capsule is a cartilaginous element developmen-

tally independent of other elements of the chondro-
cranium or membranous cranial bones (de Beer,
1937). More detailed studies focusing on morpho-
genesis of the respiratory turbinate are necessary in
order to confirm that its attachment is indeed inde-
pendent of the identity of adult bones and can have
variable positions in the main nasal airway.

The result of ancestral state reconstruction of the
presence/absence of ossification shows that the most
recent common ancestor of Aves lacked an ossified
respiratory turbinate whereas ossification occurred
independently for several times in this clade (Fig. 3).
There is still no consensus regarding the avian phy-
logeny, especially the relationship among major
clades (e.g., Jetz et al., 2012; 2014; Prum et al.,
2015). Regardless of which Avian tree topology is
adopted, however, the lack of an ossified turbinate
ancestrally in Aves and later, independent ossification
in several clades found in the present result will hold.

The above observations on robustly-beaked clades
indicate that the OC for the respiratory turbinate may
be recognized as a ridge positioned on the dorsal to
dorsolateral walls of the nasal cavity proper if a fossil
species of Avemetatarsalia indeed had the structure. It
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Ancestral reconstruction of the presence/absence of the ossified turbinate by the parsimony method. The tree

topology was obtained from the BirdTree.org website (Jetz et al., 2012, 2014).

is noteworthy that the presence or absence of the OC
varied even among several specimens of Terpsiphone
atrocaudata (Table 1), suggesting that a fossil taxon
may also show similar individual variations. Further-
more, the ridge supporting the olfactory turbinate as
seen in Paleognathae needs to be distinguished from
the one associated with the respiratory turbinate in
fossil taxa. In the case of non-avian theropod dino-
saurs, both the nasal cavity proper and olfactory
region extended rostrocaudally (Witmer and Ridgely,
2009), potentially making the positions of the respi-
ratory and olfactory turbinates rather distant from
each other. Such a condition may facilitate identifica-
tion of a certain OC of the respiratory turbinate and
distinction from the olfactory one.

Previously, Witmer and Ridgely (2010) identified
a possible respiratory turbinate in CT-scan images

of CMNH 7541 (either Nanotyrannus or a juvenile
Tyrannosaurus) that appears vaguely within matrix
associated with both the nasal and the maxilla.
Bourke et al. (2014) proposed a ridge on the roof of
the nasal cavity in Pachycephalosauridae, particu-
as a putative OC.
Whether non-avian dinosaurs really had the respira-
tory turbinate or not remains uncertain because, in
the context of the EPB approach, the second closest
bracketing taxon, Crocodylia, lacks the turbinate,
making the inference equivocal (Level II inference;
Witmer, 1995a), as well as because the structure
was so fragile that it would be rarely preserved in
the fossil record even if it had really existed
(Bourke et al., 2014). However, the possible posi-
tion of the OC identified in this study is consistent
with those of the structures suggested as evidence of

larly Stegoceras validum,
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their possessing the respiratory turbinate by Witmer
and Ridgely (2010) and Bourke ef al. (2014), thus
providing some support for their arguments.
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