Zircon U–Pb ages of the granitic rocks in Kunisaki district, northeastern Kyushu, Southwest Japan

Yukiyasu Tsutsumi* and Kenichiro Tani

Department of Geology and Paleontology, National Museum of Nature and Science 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan *Author for correspondence: ytsutsu@kahaku.go.jp

Abstract The Kunisaki district in the eastern part of northern Kyushu is interpreted to be the western extension of the Ryoke belt. Zircon U–Pb ages of 8 granitoid samples from the district were obtained. Granite samples from the western part of the district are 96–100 Ma in U–Pb age and are attributed to the Ryoke belt. Granitoid samples from the eastern part of the district show relatively older ages than the western part, 108–110 Ma which is consistent with the Higo belt rather than the Ryoke belt. The granitoids in the district broadly become younger towards the northwest, from the oceanic side to continental side as well as the western side of central to northern Kyushu. Although the extension of the Ryoke belt was confirmed in the eastern side of Kyushu in this paper, the western extension of the Ryoke belt remains unclear.

Key words: granitic rocks, zircon age, Kunisaki Peninsula, Ryoke belt, Higo belt

Introduction

Kyushu is subdivided by the Matsuyama–Imari and Usuki–Yatsushiro tectonic lines into three parts: northern, central and southern Kyushu. Distribution of pre-Paleogene granitoids is restricted to northern and central Kyushu. The Kunisaki district is situated in the eastern part of northern Kyushu (Fig. 1) and has been interpreted to be the western extension of the Ryoke belt on the basis of the presence of high-*T* type metamorphic rocks and geographical continuity (e.g. Karakida *et al.*, 1969). Late Cretaceous granitoids and metamorphic rocks in central Kyushu had been also interpreted to be western extension of the Ryoke belt on the basis of mineral K–Ar and Rb–Sr ages (e.g., Nakajima et al, 1995; Sasada, 1987).

Zircon U–Pb dating has become a common method to distinguish the plutonism age of granitoids. The zircon U–Pb ages of Ryoke granitoids in the Chugoku and Shikoku regions range from *ca*. 90 to 105 Ma (Iida *et al.*, 2015; Shimooka *et al.*, 2019; Skrzypek *et al.*, 2016). The zircon U–Pb ages reveal that the granitoids in central Kyushu are much older than the Ryoke granitoids; the Higo Plutonic Complex *ca*. 108–113 Ma (Tsutsumi, 2022) and the Nioki granite in the Asaji district of *ca.* 135 Ma (Fujii *et al.*, 2008). These ages show that the granitoids in southern central Kyushu are not the western extension of the Ryoke belt in Kyusyu. Alternatively, Miyazaki *et al.* (2017) proposed that the Ryoke belt extends to the Omuta area in the Chikuhi district, northern central Kyushu.

As granitoids in the Kunisaki district may be candidates for the eastern extension of the Ryoke granitoids, newly 8 zircon U–Pb ages of granitoids in the district are studied in this paper to determine if the Ryoke belt extends to Kyushu or not.

Geological setting

Basement rocks in the Kunisaki district are found as small bodies only in the Yamakunigawa, Ajimu, Ushiyashiki, Gyojamisaki and Kurotsuzaki areas because of concealment beneath Neogene to Quaternary volcanic and pyroclastic rocks (Fig. 2). The basement rocks consist mainly of Cretaceous granitoids which are more or less associated with high-*T* type metamorphic rocks (e.g. Karakida *et al.*, 1969). Foliation of granitoids and schistose/gneissose texture of metamorphics show trend broadly E-W (Osanai *et al.*, 1993; Ishizaka, *et al.*, 2005). However, compositional features of granitoids and tex-

^{© 2023} National Museum of Nature and Science

①Usuki-Yatsushiro TL ②Oita-Kumamoto TL ③Matsuyama-Imari TL ④Ushizu-Kariya TL ⑤Kokura-Tagawa TL

Fig. 1. Distribution map of the pre-Paleogene rocks in northern Kyushu.

tural and mineralogical features of metamorphics have NE-SW trending zonation (Murakami, 1994).

Granitoids in the Yamakunigawa area consist of tonalite, granodiorite and granite. Xenoliths of gneisses were reported in southern part of the exposure area of the granitoids (Murakami, 1994). In the Ajimu area, granitoids are subdivided into the Maruta granodiorite and Tsuru granite. The granite is accompanied by mica schist which is similar to schists in the Ryoke belt (Kasama, 1953). The biotite K–Ar age of the Maruta granodiorite is 78.2 ± 3.9 Ma (Sasada, 1987).

Although the granitoids in the Ushiyashiki area had been named "Ushiyashiki granite" (Karakida et al., 1992; Osanai et al., 1993), the granitoids are subdivided into two granitoid types: a relatively mafic and felsic, quartz diorite to tonalite and granite. Xenoliths of the former granitoids are sometimes observed in the latter granitoids. Therefore, they were re-named the "Ushiyashiki plutonic complex" (Ishizaka, et al., 2005). K-Ar ages of 97 Ma and 88 Ma were reported for the granitoids in this area (Matsumoto and Narishige, 1985). The metamorphics in this area consist mainly of pelitic gneiss, quartz gneiss and amphibolite. Metamorphic grade is high, similar to the high-grade part of the Ryoke belt in the Yanai area, Yamaguchi Prefecture, (Ikeda 2004).

The granitoids in the Gyojamisaki area were named the "Gyojamisaki tonalite" (Karakida et al., 1992; Osanai et al., 1993). This grouping included various types of plutonic rocks; gabbro, quarts diorite, tonalite, granodiorite to granite, and two-mica granite. Therefore, they were re-named the "Gyojamisaki plutonic complex" (Ishizuka, et al., 2005). K-Ar ages of white mica and biotite from the complex are reported as 94 Ma and 85.5 ± 4.3 Ma, respectively (Sasada, 1987 and references therein). The granitoids in the Kurotsuzaki area are named the "Kurotsuzaki tonalite" (Karakida et al., 1992; Osanai et al., 1993) and consist not only tonalite but also the other types of granitoids. K-Ar ages of biotite and hornblende from the granitoids were $91.1 \pm 4.6 \,\text{Ma}$ (Sasada, 1987) and $98.7 \pm 4.9 \,\text{Ma}$ (Kamei et al., 2004), respectively.

K–Ar ages of granitoids in the Kunisaki district, range from 78 Ma to 97 Ma. However, the whole rock isochron (WRI) Rb–Sr age, using multiple rock samples from Gyojamisaki and Kurotsuzaki areas, was 142.2 ± 2.1 Ma (2σ , Osanai *et al.*, 1993), far older than K–Ar ages.

Analytical methods

All sample preparation and analyses were conducted at National Museum of Nature and Science, N33°40

10 km

Fig. 2. Geological map of the study area showing the sampling localities, modified after Ishizuka et al. (2009). Gd: granodiorite, Gr. Granite.

Tsukuba, Japan. The rock samples were scrubbed and washed in an ultrasonic bath for ten minutes to avoid surface zircon contaminants as much as possible. Fragmentation of the rock samples was conducted by a high voltage pulse power selective fragmentation equipment, SELFRAG Lab (Selfrag AG). The zircon grains were handpicked from heavy fractions that were separated from heavy-liquid techniques. Zircon grains from the samples, the zircon standards TEMORA2 (416.78 Ma; Black et al., 2004) and OD-3 (33 Ma; Iwano et al., 2013), and the glass standard NIST SRM610 were mounted in an epoxy resin and polished till the surface was level with the center of the embedded grains. Before the mounting and polishing, secondary electron (SE) images of zircon grains are taken for morphological assessment. After mounting and polishing, backscattered electron and cathodoluminescence (CL) images of zircon grains were taken. A scanmicroscope-cathodoluminescence ning electron equipment, JSM-6610 (JEOL) and a CL detector (SANYU electron), was used for SE and CL images. The images were used to select suitable sites for analysis. U-Pb dating of these samples was carried out using a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS) that was composed of NWR213 (Elemental Scientific Lasers) and Agilent 7700x (Agilent Technologies). The experimental conditions and the analytical procedures for the measurements were after Tsutsumi et al. (2012), and additional devices of buffered type stabilizer (Tunheng and Hirata, 2004) and TwoVol2 sample cell were applied. The spot size of the laser was 25 µm. A correction for common Pb was made on the basis of the measured ²⁰⁷Pb/²⁰⁶Pb ratio (²⁰⁷Pb correction), and ²⁰⁸Pb/²⁰⁶Pb and Th/U ratios (²⁰⁸Pb correction) (e.g. Williams, 1998) and the model for common Pb compositions proposed by Stacey and Kramers (1975). In this paper, we adopt ²⁰⁷Pb correction for age discussion because it is effective in calculating Phanerozoic ²³⁸U-²⁰⁶Pb* age compared with ²⁰⁸Pb correction (e.g. Williams, 1998). ²³⁸U/²⁰⁶Pb* and ²⁰⁷Pb*/²⁰⁶Pb* ratios which corrected by ²⁰⁸Pb correction are used for the concordia plot. Pb* indicates radiometric Pb. The pooled ages presented in this study were calculated using IsoplotR software with statistically rejection functionality enabled (Vermeesch, 2018). The data of secondary standard OD-3 zircon obtained during analysis yielded weighted mean ages of 33.5 ± 1.2 Ma (n = 10; MSWD = 0.69; when YKG1, YKG2 andMRT were analyzed), 33.2 ± 1.0 Ma (n = 12; MSWD=1.04; when UYS1, UYS2, GJM2 and KTZ were analyzed) and 32.9 ± 1.2 Ma (n = 7; MSWD = 0.92; when GJM1 was analyzed). MSWD is acronym of mean square weighted deviation, which is calculated from square root of χ^2 value.

Sample descriptions and results of zircon age analysis

Table 1 lists zircon data in terms of the fraction of common 206 Pb, U and Th concentrations, Th/U, 238 U/ 206 Pb* and 207 Pb*/ 206 Pb* ratios, and radiometric 238 U- 206 Pb* ages of the samples. All errors are 1 sigma level. All zircon grains in the samples show rhythmic oscillatory and/or sector zoning on CL images (Fig. 3), which is commonly observed in igneous zircons (e.g., Corfu *et al.*, 2003). Errors of weighted mean zircon U–Pb ages are 95% confidence interval (95% conf.). Concordia diagrams for each sample are shown in Fig. 4. The obtained weighted mean ages and sample localities are summarized in Table 2.

All rock samples are stored at the National Museum of Nature and Science. The registration number of each sample is the catalogue number of the rock specimen in the collection database of the National Museum of Nature and Science (http://db.kahaku.go.jp/webmuseum_en/).

YKG1: Yamakunigawa area

The sample was collected between Hirayamaike pond and Oike pond, northeastern part of the Koge Town, Fukuoka Prefecture (lat: N 33°33'20.1", long: E 131°09'57.1"). This is a medium-grained weathered granite. The registration number is 138218.

Most zircon grains are partly rounded and are 140 to $270\,\mu\text{m}$ in length with elongation ratios of 2.0 to 2.8. CL images of the grains are relatively bright with distinct oscillatory and/or sector zoning. 41 spots from 36 grains were analyzed and 40 data were concordant. Concordant data indicate 87–110Ma, 188Ma and 233Ma. After 7 older data were excluded, the weighted mean age of 33 data indicates 95.5 ± 1.0 Ma (MSWD = 1.92; Fig. 5A).

YKG2: Yamakunigawa area

The sample was collected from west side bank of the Yamakunigawa River, southeastern part of the Koge Town, Fukuoka Prefecture (lat: N 33°31'34.0", long: E 131°10'00.3"). This is a coarse-grained biotite granite. The major minerals of this rock are plagioclase, quartz, alkali feldspar and biotite. Plagioclase occurs as euhedral to subhedral crystals and exhibits indistinct albite twin and oscillatory zoning. Undulatory extinction is observed in quartz. Allanite and titanite are common accessory minerals. The registration number is 138219.

Most zircon grains are prismatic and are 140 to $250\,\mu\text{m}$ in length with elongation ratios of 2.3 to 3.4. CL images of the grains are relatively bright with distinct oscillatory zoning. Although some darker CL cores were observed, there is no age difference beyond the error range. 41 spots from 31 grains were analyzed and 38 data are concordant. Concordant data indicate 92–107Ma, 1786Ma, 1866Ma and 1879Ma. After 7 older data were excluded, the weighted mean age of 31 data indicates 95.5 ± 1.0 Ma (MSWD = 2.46, Fig. 5B).

MRT: Maruta granodiorite, Ajimu aera

The sample was collected from west side bank of the Tsubusagawa River, southeastern part of the Ajimu Town, Oita Prefecture (lat: N 33°21'14.0", long: E 131°23'55.9"). This is a medium-grained weathered granite. The registration number is 138220.

Most of zircon grains are partly rounded and are 140 to $230\,\mu$ m in length with elongation ratios of 1.4 to 4.0. CL images of the grains are relatively bright with distinct oscillatory and/or sector zoning. 44 spots from 37 grains were analyzed and 40 data were concordant. Concordant data indicate 91–108 Ma. After 1 datum rejected by statistically rejection functionality of IsoplotR, the weighted mean age of 39 data indicates 100.4 ± 1.2 Ma (MSWD = 1.55, Fig. 5C).

UYS1: Ushiyashiki area

The sample was collected from central part of the Kitsuki City, Oita Prefecture (lat: N 33°27'59.3", long: E 131°30'42.6"). This is a fine-grained biotite granodiorite. The major minerals of this rock are plagioclase, quartz, biotite, and alkali feldspar. Plagioclase occurs as euhedral to subhedral crystals and exhibits indistinct albite twin and oscillatory zoning. Undulatory extinction is observed in quartz. The registration number is 138241.

Most of zircon grains are prismatic and are 110 to $200\,\mu\text{m}$ in length with elongation ratios of 1.5 to 2.9. CL images of the grains are relatively bright with distinct oscillatory zoning. 44 spots from 35 grains were analyzed and 40 data are concordant.

Fig. 3. Morphological secondary electron (SE) images before cement in resin and cathodoluminescence (CL) images of analyzing section of typical zircon grains from the samples. Circles on the images indicated analyzed spots by LA-ICP-MS. Spot diameter is 25 μm approx.

Concordant data indicate 107-127 Ma, 137 Ma, 163 Ma, 189 Ma, 230-265 Ma and 1874 Ma. After 17 older data were excluded, the weighted mean age of 23 data indicates 110.8 ± 1.1 Ma (MSWD = 0.50, Fig. 5D).

UYS2: Ushiyashiki area

The sample was collected from central part of the Kitsuki City, Oita Prefecture (lat: N 33°28'12.1", long: E 131°31'26.1"). This is a medium-grained two-mica granite. The major minerals of this rock are quartz, plagioclase, alkali feldspar, biotite, and muscovite. Plagioclase occurs as euhedral to subhe-

dral crystals and exhibits indistinct albite twin and oscillatory zoning. Undulatory extinction is observed in quartz. The registration number is 138243.

Most of zircon grains are prismatic and are 150 to $420\,\mu\text{m}$ in length with elongation ratios of 1.2 to 5.3. CL images of the grains are relatively bright with distinct oscillatory zoning. 44 spots from 37 grains were analyzed and 41 data are concordant. Concordant data indicate 90–106 Ma, 112–116 Ma and 1842 Ma. After 7 older data were excluded and 1 datum rejected by statistically rejection functionality of IsoplotR, the weighted mean age of 33 data

Tsutsumi and Tani

Table 1. LA-ICP-MS U–Pb data and calculated ages of zircons in the samples.

			.010 1.		101 1010 0	r o auta ana ea	ieuluieu uges ol		bumpies.		
Labels	²⁰⁶ Pb _c ⁽¹⁾ (%)	U (ppm)	Th (ppm)	Th/U	²³⁸ U/ ²⁰⁶ Pb* ⁽¹⁾	²⁰⁷ Pb*/ ²⁰⁶ Pb* (1)	²³⁸ U- ²⁰⁶ Pb* age ⁽¹⁾ (Ma)	²³⁸ U- ²⁰⁶ Pb* age ⁽²⁾ (Ma)	²⁰⁷ Pb*/ ²⁰⁶ Pb* age ⁽¹⁾ (Ma)	Disc ⁽³⁾ (%)	Remarks
YKG1_01.1	0.03	127	103	0.83	73.47 ± 2.54	0.0439 ± 0.0134	87.1 ± 3.0	87.2 ± 2.7			
YKG1_02.1	0.00	1019	681	0.69	27.16 ± 0.39	0.0521 ± 0.0014	233.1 ± 3.3	232.7 ± 3.3			Ν
YKG1_02.2 YKG1_03.1	0.00	914	171	0.11	66.91 ± 1.21	0.0499 ± 0.0048 0.0499 ± 0.0024	95.2 ± 2.1 95.6 ± 1.7	95.4 ± 2.1 95.4 ± 1.7			
YKG1_04.1	0.00	338	124	0.38	64.64 ± 1.47	0.0459 ± 0.0034	99.0 ± 2.2	99.0 ± 2.2			
YKG1_05.1 VKG1_06.1	0.00	610 1158	185	0.31	69.41 ± 1.51 68.28 ± 1.15	0.0491 ± 0.0027 0.0466 ± 0.0023	92.2 ± 2.0 93.7 ± 1.6	92.1 ± 2.0 93.9 ± 1.6			
YKG1_00.1	0.00	70	38	0.52	61.40 ± 3.14	0.0400 ± 0.0023 0.0376 ± 0.0111	104.1 ± 5.3	104.1 ± 5.3			Ν
YKG1_07.2	0.30	519	137	0.27	67.88 ± 1.57	0.0473 ± 0.0045	94.3 ± 2.2	94.4 ± 2.2			
YKG1_08.1 YKG1_09.1	0.00	596 1000	293 305	0.51	65.26 ± 1.29 59.89 ± 1.13	0.0478 ± 0.0028 0.0489 ± 0.0020	98.0 ± 1.9 106.7 \pm 2.0	98.0 ± 1.9 106.6 \pm 2.0			N
YKG1_09.2	0.00	1242	401	0.33	64.46 ± 1.05	0.0499 ± 0.0020	99.2 ± 1.6	99.0 ± 1.6			14
YKG1_10.1	0.72	1244	542	0.45	69.07 ± 1.10	0.0492 ± 0.0033	92.7 ± 1.5	92.5 ± 1.4			
YKG1_11.1 YKG1_12.1	0.00	376	68 122	0.19	65.07 ± 1.50 68.04 ± 1.64	0.0477 ± 0.0035 0.0563 ± 0.0034	98.3 ± 2.2 94.1 ± 2.3	98.3 ± 2.2 93.1 ± 2.3			DN
YKG1_13.1	0.00	1499	718	0.49	66.74 ± 1.08	0.0478 ± 0.0016	95.9 ± 1.5	95.9 ± 1.5			2,11
YKG1_14.1	0.00	934	359	0.39	66.82 ± 1.15	0.0489 ± 0.0023	95.8 ± 1.6	95.6 ± 1.7			
YKG1_15.1 YKG1_17.2	0.00	451 570	146 82	0.33	67.53 ± 1.39 64.71 ± 1.33	0.0486 ± 0.0031 0.0464 ± 0.0032	94.8 ± 1.9 98.9 ± 2.0	94.7 ± 2.0 98.9 ± 2.0			
YKG1_18.1	1.06	166	129	0.79	69.75 ± 2.40	0.0446 ± 0.0113	91.8 ± 3.1	92.1 ± 3.0			
YKG1_19.1	0.00	261	212	0.83	69.38 ± 1.56	0.0462 ± 0.0039	92.3 ± 2.1	92.3 ± 2.1			
YKG1_20.1 VKG1_21.1	0.00	402	68 168	0.17	67.25 ± 1.38 33.82 ± 0.56	0.0488 ± 0.0032 0.0487 ± 0.0021	95.2 ± 1.9 187.8 ± 3.1	95.0 ± 2.0 188.1 + 3.1			N
YKG1 21.2	0.33	419	65	0.16	67.04 ± 1.66	0.0509 ± 0.0021	95.5 ± 2.4	95.1 ± 2.4			14
YKG1_22.1	0.00	66	57	0.89	63.39 ± 2.48	0.0453 ± 0.0080	100.9 ± 3.9	100.9 ± 3.9			
YKG1_23.1 VKG1_24.1	1.21	124 576	158	0.61	65.42 ± 2.33 65.47 ± 1.30	0.0263 ± 0.0117 0.0483 ± 0.0024	97.8 ± 3.5 97.7 ± 1.9	99.0 ± 3.3 97.7 ± 2.0			
YKG1 25.1	0.09	225	26	0.12	65.74 ± 1.84	0.0431 ± 0.0049	97.3 ± 2.7	97.4 ± 2.7			
YKG1_26.1	0.00	91	56	0.63	60.63 ± 2.20	0.0383 ± 0.0053	105.5 ± 3.8	105.5 ± 3.8			Ν
YKG1_28.1	0.00	365	151	0.42	63.06 ± 1.17	0.0447 ± 0.0029 0.0472 ± 0.0021	101.4 ± 1.9	101.4 ± 1.9			
YKG1 29.1	0.03	172	99 75	0.13	58.18 ± 1.71	0.0473 ± 0.0031 0.0420 ± 0.0055	109.9 ± 3.2	109.9 ± 3.2			Ν
YKG1_30.1	0.00	76	44	0.60	68.37 ± 3.02	0.0431 ± 0.0082	93.6 ± 4.1	93.6 ± 4.1			
YKG1_31.1	0.00	825	191	0.24	68.37 ± 1.13	0.0490 ± 0.0023	93.6 ± 1.5	93.5 ± 1.6			
YKG1_32.1 YKG1_33.1	0.00	528 70	143 54	0.28	64.87 ± 1.39 68.84 ± 2.87	0.0347 ± 0.0038 0.0313 ± 0.0097	98.0 ± 2.1 93.0 ± 3.8	97.8 ± 2.1 93.0 ± 3.8			
YKG1_34.1	0.00	583	126	0.22	68.97 ± 1.30	0.0508 ± 0.0031	92.8 ± 1.7	92.5 ± 1.8			
YKG1_35.1	0.00	721	330	0.47	59.81 ± 1.12	0.0449 ± 0.0018	106.9 ± 2.0 04.7 \pm 1.8	106.9 ± 2.0			Ν
YKG1_30.2	0.23	71	39	0.23	67.57 ± 1.20 68.56 ± 3.17	0.0498 ± 0.0030 0.0207 ± 0.0159	94.7 ± 1.8 93.4 ± 4.3	94.3 ± 1.8 94.2 ± 4.0			
YKG1_38.1	0.26	1056	305	0.30	66.98 ± 1.06	0.0484 ± 0.0028	95.5 ± 1.5	95.5 ± 1.5			
YKG2_01.1	1.71	212	77	0.37	67.57 ± 2.32	0.0513 ± 0.0087	94.7 ± 3.2	94.3 ± 3.2			DN
YKG2_02.1 YKG2_04.1	0.00	522 491	160	0.31	67.79 ± 1.14 65.82 ± 1.20	0.0543 ± 0.0026 0.0510 ± 0.0028	94.4 ± 1.6 97.2 ± 1.8	95.0 ± 1.0 96.8 ± 1.8			D, N
YKG2_05.1	0.00	690	213	0.32	66.12 ± 1.11	0.0472 ± 0.0023	96.8 ± 1.6	96.8 ± 1.6			
YKG2_06.1	0.32	605	197	0.33	66.71 ± 1.00	0.0525 ± 0.0041	95.9 ± 1.4	95.4 ± 1.4			
YKG2_07.1 YKG2_08.1	0.00	549 728	245 320	0.46	68.60 ± 1.13 67.96 ± 1.14	0.0462 ± 0.0029 0.0441 ± 0.0019	93.3 ± 1.5 94.2 ± 1.6	93.3 ± 1.5 94.2 ± 1.6			
YKG2_08.2	0.28	450	133	0.30	65.79 ± 1.19	0.0476 ± 0.0043	97.2 ± 1.7	97.3 ± 1.7			
YKG2_09.1	0.54	767	207	0.28	59.89 ± 0.94	0.0429 ± 0.0031	106.7 ± 1.7	107.3 ± 1.6			Ν
YKG2_09.2 YKG2_10.1	0.00	363	93 94	0.28	3.11 ± 0.04	0.0490 ± 0.0030 0.1149 ± 0.0013	91.8 ± 1.7 1795.8 ± 18.1	91.7 ± 1.8 1786.6 ± 18.1	1879 ± 20	4.4	Ν
YKG2_10.2	0.01	357	76	0.22	67.11 ± 1.36	0.0485 ± 0.0042	95.3 ± 1.9	95.3 ± 1.9			
YKG2_11.1	0.00	515	144	0.29	65.37 ± 1.24	0.0477 ± 0.0027	97.9 ± 1.8	97.9 ± 1.8			
YKG2_12.1	0.40	335	90	0.44	67.10 ± 2.12 67.94 ± 1.40	0.0480 ± 0.0089 0.0474 ± 0.0034	93.3 ± 3.0 94.2 ± 1.9	93.3 ± 3.0 94.2 ± 1.9			
YKG2_13.1	0.00	810	202	0.26	61.70 ± 0.99	0.0486 ± 0.0022	103.6 ± 1.6	103.6 ± 1.7			Ν
YKG2_14.1	0.00	975 641	369	0.39	69.56 ± 1.10	0.0488 ± 0.0021 0.0482 ± 0.0025	92.0 ± 1.4 93.0 \pm 1.6	91.9 ± 1.5 93.0 ± 1.6			
YKG2_15.1	0.00	95	38	0.40	60.66 ± 2.19	0.0482 ± 0.0023 0.0448 ± 0.0062	105.4 ± 3.8	105.4 ± 3.8			Ν
YKG2_17.1	0.00	205	88	0.44	60.89 ± 1.66	0.0448 ± 0.0039	105.0 ± 2.8	105.0 ± 2.8			Ν
YKG2_17.2 YKG2_18_1	0.00	721 70	503 42	0.72	64.05 ± 1.11 67.98 ± 2.02	0.0511 ± 0.0024 0.0600 ± 0.0100	99.9 ± 1.7 94.1 ± 4.0	99.5 ± 1.7 92.7 ± 4.1			
YKG2_18.2	0.00	398	133	0.34	68.52 ± 1.36	0.0539 ± 0.0033	93.4 ± 1.8	92.7 ± 1.9			
YKG2_19.1	1.55	90	63	0.71	72.43 ± 2.91	0.0169 ± 0.0140	88.4 ± 3.5	89.8 ± 3.4			D, N
YKG2_19.2 VKG2_20.1	0.38	1355	364	0.28	69.51 ± 1.10 3.67 ± 0.05	0.0453 ± 0.0025 0.1091 ± 0.0017	92.1 ± 1.4 1552 3 ± 19.4	92.4 ± 1.4 1532 5 ± 19 2	1786 ± 28	13.1	N
YKG2_20.2	0.57	446	98	0.00	64.98 ± 1.26	0.0455 ± 0.0041	98.5 ± 1.9	98.8 ± 1.9	1700 - 20	15.1	14
YKG2_21.1	0.00	748	372	0.51	64.35 ± 1.13	0.0488 ± 0.0023	99.4 ± 1.7	99.3 ± 1.8			
YKG2_23.1 VKG2_24_1	0.00	212	21	0.10	66.07 ± 1.68 61.06 ± 1.84	0.0465 ± 0.0048 0.0654 ± 0.0055	96.8 ± 2.4 104 7 ± 3.1	96.8 ± 2.4 102.5 \pm 3.2			DN
YKG2 24.2	0.00	531	134	0.26	65.97 ± 1.13	0.0482 ± 0.0028	97.0 ± 1.6	96.9 ± 1.7			D, IV
YKG2_25.1	0.09	729	312	0.44	66.76 ± 1.10	0.0510 ± 0.0037	95.8 ± 1.6	95.5 ± 1.5			
YKG2_26.1 VKG2_27.1	0.00	517 325	159	0.32	63.48 ± 1.10 3.58 ± 0.05	0.0456 ± 0.0027 0.1140 ± 0.0015	100.8 ± 1.7 1588 0 ± 19 2	100.8 ± 1.7 1561 9 ± 19.0	1866 + 23	14.9	N
YKG2 27.2	0.30	504	201	0.41	69.55 ± 1.38	0.0511 ± 0.0046	92.0 ± 1.8	91.7 ± 1.8	1000 - 25	14.9	14
YKG2_28.1	0.10	529	179	0.35	68.89 ± 1.35	0.0465 ± 0.0039	92.9 ± 1.8	93.0 ± 1.8			
YKG2_29.1	0.00	972 318	401 Q/	0.42	65.07 ± 0.96 67.72 ± 1.50	0.0467 ± 0.0019 0.0512 ± 0.0037	98.3 ± 1.4 94.5 ± 2.1	98.3 ± 1.4 94.1 ± 2.1			
YKG2_30.1	0.20	839	321	0.39	68.92 ± 1.12	0.0492 ± 0.0037	92.9 ± 1.5	92.7 ± 1.5			
YKG2_32.1	0.09	735	67	0.09	63.76 ± 0.99	0.0513 ± 0.0029	100.3 ± 1.5	99.9± 1.6			
YKG2_33.1 MRT_01_1	0.00	758 162	263 104	0.36	65.91 ± 1.23 61.32 ± 1.70	0.0470 ± 0.0022 0.0440 ± 0.0055	97.1 ± 1.8 104.3 ± 2.0	97.1 ± 1.8 104.3 ± 2.0			
MRT_01.2	0.00	102	59	0.55	66.84 ± 2.51	0.0640 ± 0.0070	95.7 ± 3.6	93.8 ± 3.6			D, N
MRT_02.1	0.00	135	57	0.43	61.96 ± 1.75	0.0393 ± 0.0046	103.2 ± 2.9	103.2 ± 2.9			
MRT_03.1 MRT_05_1	1.24	230 242	183 173	0.82	65.36 ± 1.58 63.92 ± 1.48	0.0394 ± 0.0092 0.0496 ± 0.0045	$9/.9 \pm 2.3$ 100 1 ± 2 3	98.9 ± 2.3 99.9 ± 2.4			
	5.00	242	1/3	5.75	05.72 - 1.40	0.0170 - 0.0045	100.1 - 2.3	<i>JJ.J</i> = 2. 4			

Luke (b) (b) (p) (p) (p) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		²⁰⁶ Pb _c ⁽¹⁾	U	Th	771 // I	2381 7 206101 * (1)	20751 * 20651 * (1)	²³⁸ U- ²⁰⁶ Pb* age ⁽¹⁾	³⁸ U- ²⁰⁶ Pb* age ⁽¹⁾ ²³⁸ U- ²⁰⁶ Pb* age ⁽²⁾ ²⁰⁷ Pb*/ ²⁰⁶ Pb* age ⁽¹⁾		Disc ⁽³⁾	D 1
MRT 05 000 110 043 0439 000707 096 42 27 992 24 27 MRT 051 000 91 44 0.56 633 175 00343 000744 102.3 ± 31 105.5 ± 31 MRT 07 000 91 44 0.56 62.1 ± 00343 00071 102.3 ± 31 003.5 ± 35 100.5 ± 35 100.5 ± 35 MRT 091 10.1 156 61 0.40 0.035 ± 100.7 ± 93.4 ± 27 94.5 ± 2.4 44.6 ± 32 94.5 ± 2.4 94.6 ± 2.3 94.5 ± 2.4 94.6 ± 32 94.5 ± 32 94.5 ± 32 94.5 ± 32 94.5 ± 32 94.5 ± 33 100.5 ± 33 100.5 ± 33 100.5 ± 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34	Labels	(%)	(ppm)	(ppm)	Th/U	250U/200Pb (1)	20, Pb / 200 Pb (1)	(Ma)	(Ma)	(Ma)	(%)	Remarks
MRT 0.61 0.00 16.5 9.2 0.83 0.03 1.76 0.043 0.04 10.5 1.1 MRT 0.02 0.00 0.12 2.24 0.13 0.14 0.13 1.03 0.03 1.2 1.2 0.03 1.2 1.2 0.03 1.2 1.2 0.03 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	MRT_05.2	0.06	216	74	0.35	64.89 ± 1.79	0.0509 ± 0.0067	98.6± 2.7	98.2 ± 2.7			
MRT 07 U00 9 44 U034 ± 0.004 ± 0.007 U034 ± 0.004 ± 0.007 U034 ± 0.004 ± 0.007 MRT 052 000 122 007 0.	MRT_06.1	0.00	163	92	0.58	60.39 ± 1.76	0.0439 ± 0.0046	105.9 ± 3.1	105.9 ± 3.1			
NRT 02 000 122 100 00055 00055 100 5 56 D.N MRT 001 11.1 241 17.3 76 76.75 71.2 10055 2.4 94.6 2.3 MRT 002 0.20 164 38 0.36 6.33.3 2.00 0.81 10072 3.2 99.44 3.2 MRT 011 10 16 6.33.3 2.06 6.021 2.00874 9.084 2.0 99.44 3.2 MRT 110 000 112 6.4 0.85 6.429.2 0.00724 9.066 3.6 91.5 3.6 D.N MRT 141 0.00 112 6.4 0.85 6.0070 90.03 10.12 2.9 93.4 3.6 D.N MRT 151 0.00 17.7 124 90.03 0.037.4 100.3 10.27.2 100.3 10.24 3.7 108.4 3.6 MRT 151 0.00 175 94 0.	MRI_07.1 MRT_08.1	0.00	202	44 260	0.50	62.21 ± 2.15 64.15 ± 1.74	0.0434 ± 0.0074 0.0514 ± 0.0050	102.8 ± 3.5 99.7 ± 2.7	102.8 ± 3.5 99.3 ± 2.7			
MRT (19) 1.13 2.41 172 0.73 67.05 ± 1.72 0.054 ± 0.0082 0.074 ± 2.0082	MRT_08.2	0.00	122	104	0.87	62.01 ± 2.18	0.0685 ± 0.0076	103.1 ± 3.6	100.5 ± 3.6			D, N
Abd. 1972 Lin 1 Biol 1 Biol 1 Biol 2 Dist 1 Biol 2 Biol 2 Dist 1 Biol 2 Biol 2 <thbiol 2<="" th=""> Biol 2 <thbiol 2<<="" td=""><td>MRT_09.1</td><td>1.13</td><td>241</td><td>172</td><td>0.73</td><td>67.05 ± 1.72</td><td>0.0548 ± 0.0083</td><td>95.4 ± 2.4</td><td>94.6 ± 2.3</td><td></td><td></td><td></td></thbiol></thbiol>	MRT_09.1	1.13	241	172	0.73	67.05 ± 1.72	0.0548 ± 0.0083	95.4 ± 2.4	94.6 ± 2.3			
NRT_11 0.00 158 0.05 0.278 154 0.0484 2.0044 0.046 2.99 101.5 3.0 MRT_131 0.00 192 3.0 3.66 6.212.448 0.0442 0.0049 3.6 3.6 3.53 3.6 MRT_151 0.00 1.0 0.00 1.0	MRT_09.2 MRT_10.1	0.20	164 165	58 63	0.36	63.53 ± 2.06 65.01 ± 1.79	0.0581 ± 0.0082 0.0471 ± 0.0074	100.7 ± 3.2 98.4 \pm 2.7	99.4 ± 3.2 98.5 ± 2.6			
MRT 21.1 0.00 99 35 0.50 66.21 2.4.8 00742 0.004 90.64 3.6 97.54 3.1 97.34 3.1 MRT 14.1 0.20 112 64 0.58 64.294 0.20 0.005 0.007 99.01 3.1 97.34 3.1 MRT 15.1 0.00 117 0.30 0.03 61.01 11.01 12.2 13.1 0.01 13.1 97.34 1.1 MRT 16.1 0.00 117 25 0.01 64.71 1.73 0.044 10.057 10 105.72 10 10.157 14 0.045 10.01 11.	MRT 11.1	0.00	158	103	0.67	62.98 ± 1.84	0.0484 ± 0.0045	101.6 ± 2.9	101.5 ± 3.0			
MRT 141 20.00 112 64 0.03 0.04 2.02 0.000 90.0 31 97.3 51 MRT 151 20 105 115 0.09 0.224 144 0.001 101 12.2 105 1.4 1.4 0.001 101 1.5 2.4 1.5 1.6 2.5 101.5 2.4 1.5 1.6 2.5 101.5 2.4 1.5 1.6 2.5 1.01.5 2.4 1.5 1.6 1.5 2.4 1.5 1.6 2.5 1.01.5 2.4 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6	MRT_12.1	0.00	99	35	0.36	66.21 ± 2.48	0.0742 ± 0.0084	96.6± 3.6	93.5 ± 3.6			D, N
NRT 1:0 0.77 2.72 2.43 0.83 0.301 1.05 2.9 99.84 2.7 NRT 1.50 0.00 1.37 2.50 0.19 60.47 1.73 0.0446 0.005 1.65 2.4 N <	MRT_13.1 MRT_14_1	0.00	112	64 111	0.58	64.59 ± 2.02 62.24 ± 1.84	0.0620 ± 0.0070 0.0416 ± 0.0111	99.0 ± 3.1 102.7 \pm 3.0	97.3 ± 3.1 103.6 \pm 2.9			
MRT_161 0.072 218 83 0.39 0.298±1.54 0.0487±0.0073 101.6±2.55 101.5±3.10 MRT_114. 0.00 137 25 0.157±3.0 105.7±3.0 105.7±3.0 MRT_114. 0.00 173 30.6±2.07 0.0389±0.0098 107.2±3.7 108.4±3.6 MRT_114. 0.00 173 34 0.055±1.27 108.4±3.6 108.7±3.6 MRT_121. 0.07 188 124 0.054 0.075±1.00 0.057±3.0 101.6±3.3 MRT_221. 0.00 183 81 0.16 61.3±1.56 0.0539±0.003 99.7±2.4 99.0±2.4 MRT_231. 0.00 193 24.6 0.655±1.61 0.0169±0.0033 103.5±1.6 103.3±6.1 MRT_241. 0.00 193 25.7 0.546±1.82 0.044±0.0044 90.8±2.1 90.8±2.2 M0.8±3.4 MRT_241. 0.00 173 0.055±0.0129 0.011 0.055±0.0139 0.01.2±3.4 0.01.3±3.4 0.01.3±3.4 0.01.3±3.4 0.01.3±3.4 <td>MRT 15.1</td> <td>0.67</td> <td>277</td> <td>224</td> <td>0.83</td> <td>63.01 ± 1.84</td> <td>0.0617 ± 0.0103</td> <td>102.7 = 5.0 101.5 ± 2.9</td> <td>99.8 ± 2.7</td> <td></td> <td></td> <td></td>	MRT 15.1	0.67	277	224	0.83	63.01 ± 1.84	0.0617 ± 0.0103	102.7 = 5.0 101.5 ± 2.9	99.8 ± 2.7			
MRT_161 0.00 137 25 0.19 60.47±.73 0.044±.0058 105.7±.30 105.7±.30 MRT_161 0.00 177 42 0.57 63.15 5 MRT_101 0.00 177 43 0.54 65.7±.10 0.64 5.7 MRT_211 0.12 158 44 0.55 65.7±.10 0.64 5.7 MRT_211 0.12 158 44 0.55 62.72±.20 0.050±.0076 0.075±.34 101.6±.33 MRT_221 0.00 183 0.36 59.78±.15 0.051±.0076 0.023±.2 106.5±.26 MRT_241 0.00 190 92.0 66.65±.107 0.090±.0045 0.055±.5 16.05.3±.36 MRT_251 0.03 18.6±.207 0.064±.0040 98.9±.2 8.8 88.2±.2 N MRT_251 0.00 175 100.05 65.3±.6±.0048 0.023±.2 N N MRT_251 0.00 175 100.54 100.44±.0044 <th< td=""><td>MRT_15.2</td><td>0.72</td><td>218</td><td>83</td><td>0.39</td><td>62.98 ± 1.54</td><td>0.0487 ± 0.0073</td><td>101.6 ± 2.5</td><td>101.5 ± 2.4</td><td></td><td></td><td></td></th<>	MRT_15.2	0.72	218	83	0.39	62.98 ± 1.54	0.0487 ± 0.0073	101.6 ± 2.5	101.5 ± 2.4			
NRT_101 0.00 175 0.94 0.55 67.71±191 0.0635±0.0044 0.559±2.7 055±2.7 055±2.7 055±2.7 NRT_01.0 0.00 81 43 0.54 0.57±1.84 0.0075±0.0076 100.4±3.7 108.1±3.8 NRT_21.1 0.00 81 43 0.54 55.7±2.08 0.0055±0.0085 99.7±2.4 99.0±2.4 NRT_22.1 0.00 101 64.6 6.53±1.60 0.035±0.0035 99.7±2.4 99.0±2.4 NRT_23.1 0.00 114 63 0.64 6.53±1.60 0.039±0.0035 97.7±2.8 100.5±2.5 8 NRT_23.1 0.00 17 0.33 6.15±2.7 0.053±1.6 0.012.3±2.8 100.3±3.2 97.4±2.1 97.4±1.2 97.	MRT_16.1 MRT_17.1	0.00	137	25 82	0.19	60.47 ± 1.73 59.64 ± 2.07	0.0446 ± 0.0056 0.0389 ± 0.0098	105.7 ± 3.0 107.2 ± 3.7	105.7 ± 3.0 108.4 ± 3.6			
MRT 20.0 0.97 188 122 0.66 66.72 ± 1.84 0.0451 ± 0.0104 95.92 ± 2.6 95.32 ± 2.5 MRT 20.1 0.12 158 84 0.55 62.72 ± 2.80 0.056 ± 0.0039 100.4 ± 3.7 106.1 ± 3.8 N	MRT 18.1	0.00	175	94	0.57	66.71 ± 1.91	0.0389 ± 0.0098 0.0453 ± 0.0046	95.9 ± 2.7	95.9 ± 2.7			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MRT_19.1	0.97	188	122	0.66	66.72 ± 1.84	0.0451 ± 0.0104	95.9 ± 2.6	96.3 ± 2.5			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MRT_20.1	0.00	81	43	0.54	58.44 ± 1.99	0.0576 ± 0.0076	109.4 ± 3.7 102.0 ± 3.4	108.1 ± 3.8 101.6 \pm 3.3			
NRT 2.2. 3.20 2.28 130 0.88 59.78±1.50 0.0618±0.0103 100.9±2.7 100.5±2.6 NRT 3.1. 0.00 140 0.0499±0.0049 98.9±2.8 98.9±2.8 98.9±2.8 NRT 3.1. 0.00 142 40.55 66.03±2.07 0.0499±0.0049 99.9±2.8 9	MRT 22.1	0.12	385	381	1.01	62.72 ± 2.08 64.15 ± 1.56	0.0500 ± 0.0089 0.0539 ± 0.0035	99.7 ± 2.4	99.0 ± 2.4			
MRT 23.1 0.00 141 63 0.46 62.341.60 0.0449 ± 0.004 98.94 ± 2.8 MRT 25.1 0.00 132 74 0.58 66.63 ± 2.07 0.0496 ± 0.0053 105.5 ± 3.6 105.3 ± 3.6 MRT 26.1 1.63 86 44 0.025 ± 0.025 ± 0.17 101.0 ± 3.3 101.1 ± 3.3 MRT 28.1 0.00 127 0.10 0.54 6.6.62 ± 2.8 0.025 ± 0.017 101.0 ± 3.3 101.1 ± 3.3 MRT 28.1 0.00 175 0.51 6.3.12 ± 2.49 0.025 ± 0.0144 101.6 ± 2.7 100.7 ± 2.8 MRT 30.1 0.00 123 158 0.46 6.5.39 ± 1.41 0.054 ± 0.044 9.4.2 2.9 9.4.4 ± 2.9 9.4.4 ± 2.9 9.4.4 ± 2.9 N MRT 30.1 0.00 123 158 0.46 6.5.39 ± 1.41 0.054 ± 0.004 9.4.4 ± 2.9 9.4.4 ± 2.9 9.4.4 ± 2.9 9.4.4 ± 2.9 N MRT 31.1 0.00 156 6.50 6.405 ± 2.00 0.448 ± 0.0404 9.3.4 9.9 ± 3.0	MRT_22.2	3.20	228	130	0.58	59.78 ± 1.50	0.0518 ± 0.0103	106.9 ± 2.7	106.5 ± 2.6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MRT_23.1	0.00	141	63	0.46	62.54 ± 1.60	0.0409 ± 0.0045	102.3 ± 2.6	102.3 ± 2.6			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MRT_24.1 MRT_25.1	0.00	190	92 74	0.50	64.65 ± 1.82 60.63 ± 2.07	0.0444 ± 0.0040 0.0496 ± 0.0053	98.9 ± 2.8 105.5 \pm 3.6	98.9 ± 2.8 105.3 \pm 3.6			
MRT 27.1 0.00 147 76 0.53 61.44 ± 1.94 0.0438 ± 0.050 104.1 ± 3.3 MRT 28.1 0.00 175 0.11 0.10 0.046 ± 2.0007 104.4 ± 2.7 104.4 ± 2.7 104.4 ± 2.7 MRT 28.2 0.84 115 57 0.51 63.31 ± 2.49 0.0297 ± 0.017 101.0 ± 3.9 101.0 ± 3.8 MRT 30.1 0.00 175 0.65 ± 2.0047 0.0448 ± 2.0047 98.4 ± 2.7 100.7 ± 2.8 MRT 30.1 0.00 185 0.48 6.503 ± 1.9 0.0448 ± 2.0047 98.4 ± 2.9 98.4 ± 2.9 N MRT 31.1 0.00 178 67.033 ± 1.07 0.0495 ± 0.0038 91.4 ± 2.3 91.2 ± 2.3 N MRT 30.1 0.00 178 20.7 0.55 ± 2.6 0.0588 ± 0.0018 0.93 ± 2.3 0.89.5 ± 3.4 MRT 3.1 0.28 196 0.37 65.16 ± 2.00 0.0491 ± 0.0012 177.6 ± 2.07 187.4 ± 1.9 4.7 N	MRT 26.1	1.63	86	44	0.52	65.66 ± 2.83	0.0256 ± 0.0129	97.4 ± 4.2	99.0 ± 4.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MRT_27.1	0.00	147	76	0.53	61.44 ± 1.94	0.0438 ± 0.0050	104.1 ± 3.3	104.1 ± 3.3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MRT_28.1	0.00	192	101	0.54	61.24 ± 1.61	0.0460 ± 0.0047	104.4 ± 2.7	104.4 ± 2.7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MRT_28.2 MRT_29.1	0.84	115	57	0.51	63.31 ± 2.49 62.96 ± 1.69	$0.029/\pm 0.011/$ 0.0554 ± 0.0048	101.0 ± 3.9 101.6 ± 2.7	101.9 ± 3.8 100.7 ± 2.8			
$\begin{split} & \mbox{MRT} 3:1.1 & 0.00 & 185 & 85 & 0.48 & 65.03 \pm 1.91 & 0.0448 \pm 0.0046 & 98.4 \pm 2.9 & 98.4 \pm 2.9 & \mbox{MRT} 3:1.1 & 10.00 & 178 & 69 & 0.40 & 64.45 \pm 1.83 & 0.0531 \pm 0.050 & 99.2 \pm 2.3 & 98.6 \pm 2.8 & \mbox{MRT} 3:1.1 & 11.7 & 10.6 & 47 & 0.45 & 69.25 \pm 2.0 & 0.0351 \pm 0.0050 & 99.2 \pm 2.3 & 98.6 \pm 2.8 & \mbox{MRT} 3:5.1 & 0.39 & 150 & 82 & 0.56 & 64.01 \pm 1.93 & 0.0487 \pm 0.0089 & 99.9 \pm 3.0 & \mbox{MRT} 3:6.1 & 0.00 & 186 & 106 & 0.59 & 68.40 \pm 2.0 & 0.0481 \pm 0.0012 & 99.8 \pm 3.0 & \mbox{MRT} 3:7.1 & 0.28 & 191 & 69 & 0.37 & 65.16 \pm 2.00 & 0.0491 \pm 0.0078 & 98.2 \pm 3.0 & 98.0 \pm 3.0 & \mbox{MRT} 3:8.1 & 0.00 & 187 & 26 & 0.30 & 61.66 \pm 2.56 & 0.0588 \pm 0.0081 & 103.7 \pm 4.3 & 102.3 \pm 4.3 & \mbox{UYSI} 0:1. & 0.00 & 187 & 26 & 0.30 & 61.66 \pm 2.56 & 0.0058 \pm 0.0081 & 103.7 \pm 4.3 & \mbox{UYSI} 0:1. & 0.00 & 127 & 63 & 25.0 & 33.1 \pm 0.00 & 0.146 \pm 0.0012 & 1786.3 \pm 2.07 & 1776.7 \pm 2.07 & 1874 \pm 19 & 4.7 & \mbox{N} MRT_3:1 & 0.00 & 102 & 76 & 0.77 & 59.36 \pm 1.22 & 0.0455 \pm 0.0030 & 120.8 \pm 2.8 & \mbox{LYSI} 0:1. & 0.00 & 102 & 76 & 0.77 & 59.36 \pm 1.69 & 0.0573 \pm 0.0090 & 113.3 \pm 3.4 & \mbox{LI2.0 \pm 3.3 & \mbox{LYSI} 0:51 & 0.42 & 133 & 104 & 0.80 & 56.88 \pm 1.65 & 0.0393 & 12.0 \pm 3.1 & \mbox{LYSI} 0:1. & 0.00 & 103 & 0.57 & 53.64 \pm 0.0015 & 110.24 \pm 3.2 & \mbox{LYSI} 0:1. & 0.00 & 103 & 0.57 & 53.64 \pm 0.0039 & 13.3 \pm 3.4 & \mbox{LI2.0 \pm 3.3 & \mbox{LYSI} 0:1. & 0.00 & 134 & 74 & 0.57 & 58.09 \pm 1.62 & 0.0492 \pm 0.0051 \pm 10.09 \pm 3.1 & \mbox{LYSI} 0:1. & 0.00 & 134 & 57.4 & \mbox{LYSI} 0:1. & 0.00 & 135 & 56.65 & 55.99 \pm 1.75 & 0.0388 \pm 0.0041 & 110.0 \pm 3.1 & \mbox{LYSI} 0:1. & 0.00 & 135 & 56.65 & 55.99 \pm 1.75 & 0.0388 \pm 0.0041 & 110.8 \pm 3.1 & \mbox{LYSI} 0:2. & 0.00 & 368 & 112.7 & 3.8 & \mbox{LYSI} 0:2. & 0.00 & 368 & 12.2 & 88.00 \pm 0.0045 \pm 0.0051 \pm 10.0027 & 123.1 \pm 2.4 & \mbox{LYSI} 0:1. & 0.00 & 135 & 56.65 & 50.99 \pm 0.051 \pm 0.0027 & 123.1 \pm 2.4 & \mbox{LYSI} 0:1. & 0.00 & 135 & 56.05 & 50.99 \pm 0.063 & 110.0 & 13.4 \pm 3.1 & \mbox{LYSI} 0:1. & 0.08 & 51.7 & 18 & 10.65 & 5.99 & 1.17 & 0.0365 \pm 0.0039 & 10.8 \pm 3.1$	MRT 30.1	0.00	230	134	0.60	65.29 ± 1.41	0.0534 ± 0.0047	98.0 ± 2.1	96.8 ± 2.2			D, N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MRT_31.1	0.00	185	85	0.48	65.03 ± 1.91	0.0448 ± 0.0046	98.4 ± 2.9	98.4 ± 2.9			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MRT_32.1	0.00	213	158	0.76	70.03 ± 1.77	0.0495 ± 0.0038 0.0521 ± 0.0050	91.4 ± 2.3	91.2 ± 2.3			Ν
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MRT_34.1	1.17	106	47	0.40	69.25 ± 2.60	0.0361 ± 0.0030 0.0361 ± 0.0112	99.2 ± 2.8 92.4 ± 3.4	93.5 ± 3.4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MRT_35.1	0.39	150	82	0.56	64.01 ± 1.93	0.0487 ± 0.0089	99.9 ± 3.0	99.8 ± 3.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MRT_36.1	0.00	186	106	0.59	68.40 ± 2.02	0.0488 ± 0.0041	93.6 ± 2.7	93.5 ± 2.8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MRI_37.1 MRT_38.1	0.28	191	69 26	0.37	65.16 ± 2.00 61.66 ± 2.56	0.0491 ± 0.0078 0.0588 ± 0.0081	98.2 ± 3.0 103.7 \pm 4.3	98.0 ± 3.0 102.3 ± 4.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1 01.1	0.09	180	94	0.53	58.50 ± 1.48	0.0424 ± 0.0073	109.3 ± 2.7	109.4 ± 2.6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_02.1	0.00	354	68	0.20	3.13 ± 0.04	0.1146 ± 0.0012	1786.3 ± 20.7	1776.7 ± 20.7	1874 ± 19	4.7	Ν
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_03.1	0.00	102	76	0.77	59.36 ± 1.78	0.0687 ± 0.0079	107.7 ± 3.2	104.9 ± 3.3			D, N
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UYS1 04.1	0.00	132	62	0.43	52.87 ± 1.22 56.42 ± 1.69	0.0433 ± 0.0030 0.0573 ± 0.0090	120.8 ± 2.8 113.3 ± 3.4	120.8 ± 2.8 112.0 ± 3.3			IN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_05.1	0.42	133	104	0.80	56.88 ± 1.65	0.0454 ± 0.0105	112.4 ± 3.2	112.8 ± 3.1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_06.1	0.00	109	103	0.97	33.63 ± 0.84	0.0455 ± 0.0039	188.9 ± 4.7	188.9 ± 4.7			N
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYSI_07.1 UYSI_07.2	0.00	355	472	0.38	$2/.41 \pm 0.32$ 56 34 ± 1.09	0.0490 ± 0.0011 0.0507 ± 0.0031	231.0 ± 2.7 113.4 ± 2.2	231.0 ± 2.7 113.1 ± 2.2			N
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UYS1_08.1	0.00	134	74	0.57	58.09 ± 1.62	0.0495 ± 0.0054	110.0 ± 3.0	109.9 ± 3.1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_08.2	0.00	468	101	0.22	58.80 ± 0.99	0.0441 ± 0.0023	108.7 ± 1.8	108.7 ± 1.8			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_09.1	0.00	103	56	0.56	55.99 ± 1.75 51.88 ± 1.01	0.0308 ± 0.0043 0.0510 ± 0.0027	114.1 ± 3.5 123.1 ± 2.4	114.1 ± 3.5 122.7 ± 2.4			D, N N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	UYS1 10.1	0.59	122	87	0.73	51.88 ± 1.01 56.10 ± 1.78	0.0565 ± 0.0027 0.0565 ± 0.0117	123.1 ± 2.4 113.9 ± 3.6	122.7 ± 2.4 112.7 ± 3.4			1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_10.2	0.68	517	181	0.36	58.99 ± 1.03	0.0445 ± 0.0039	108.4 ± 1.9	108.9 ± 1.9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_11.1	0.00	167	74	0.46	46.47 ± 1.29	0.0433 ± 0.0041	137.3 ± 3.8	137.3 ± 3.8			Ν
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYSI_12.1 UYS1_12.2	2.26	150 631	127	0.86	$59.03 \pm 1.8 /$ 57 87 ± 1 11	$0.034/\pm 0.0135$ 0.0511 ± 0.0048	108.3 ± 3.4 110.4 ± 2.1	110.1 ± 3.2 110.0 ± 2.1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	UYS1 13.1	1.37	109	63	0.59	60.02 ± 2.21	0.0309 ± 0.0118	106.5 ± 3.9	108.0 ± 3.7			
	UYS1_14.1	0.00	93	67	0.74	57.65 ± 1.86	0.0426 ± 0.0070	110.9 ± 3.5	110.9 ± 3.5			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYSI_15.1	1.14	359	280	0.80	26.30 ± 0.42 59.88 ± 1.36	0.0481 ± 0.0046 0.0580 ± 0.0041	240.6 ± 3.8 106.8 ± 2.4	241.4 ± 3.7 105 5 + 2 4			N D N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	UYS1 16.1	0.00	469	366	0.80	56.60 ± 1.07	0.0547 ± 0.0032	112.9 ± 2.1	112.0 ± 2.2			D, N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	UYS1_17.1	2.02	111	74	0.69	59.25 ± 2.23	0.0252 ± 0.0122	107.9 ± 4.0	110.1 ± 3.9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_18.1	0.46	103	54 56	0.54	58.22 ± 2.01 59.06 ± 2.15	0.0485 ± 0.0116 0.0551 ± 0.0071	109.8 ± 3.8 108.2 ± 3.0	109.8 ± 3.6 107.3 ± 4.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	UYS1 19.1	0.00	640	224	0.36	57.71 ± 1.02	0.0429 ± 0.0071	100.2 ± 5.9 110.8 ± 1.9	107.5 ± 4.0 111.0 ± 1.9			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	UYS1_20.1	0.04	161	101	0.64	56.83 ± 1.57	0.0453 ± 0.0080	112.4 ± 3.1	112.5 ± 2.9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_21.1	0.00	226	105	0.48	57.10 ± 1.32	0.0519 ± 0.0035	111.9 ± 2.6	111.4 ± 2.6			N
UYS1_24.1 0.00 181 87 0.49 28.20±0.55 0.0525±0.0029 224.6±4.3 224.1±4.4 N UYS1_25.1 0.00 153 105 0.70 52.53±1.47 0.0445±0.0048 121.6±3.4 121.6±3.4 N	UYSI_22.1 UYSI_23.1	0.48	283	88 148	0.79	55.24 ± 2.09 56 93 ± 1 22	0.0414 ± 0.0130 0.0485 ± 0.0063	115.7 ± 4.3 112.3 ± 2.4	116.2 ± 4.1 112.2 ± 2.3			N
$UYS1_25.1 0.00 153 105 0.70 52.53 \pm 1.47 0.0445 \pm 0.0048 121.6 \pm 3.4 \qquad 121.6 \pm 3.4 \qquad N$	UYS1_24.1	0.00	181	87	0.49	28.20 ± 0.55	0.0525 ± 0.0029	224.6 ± 4.3	224.1 ± 4.4			Ν
	UYS1_25.1	0.00	153	105	0.70	52.53 ± 1.47	0.0445 ± 0.0048	121.6± 3.4	121.6 ± 3.4			N
UYS1 25.2 0.00 119 73 0.63 52.67 ± 1.65 0.0508 ± 0.0054 121.2 \pm 3.8 120.9 \pm 3.8 N	UYS1_25.2	0.00	119	73	0.63	52.67 ± 1.65 56 13 ± 0.00	0.0508 ± 0.0054 0.0438 ± 0.0024	121.2 ± 3.8 113.8 ± 2.0	120.9 ± 3.8 113.8 + 2.0			Ν
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1 27.1	0.00	97	57	0.20	52.45 ± 1.67	0.0518 ± 0.0024	121.7 ± 3.8	121.2 ± 3.9			Ν
UYS1_29.1 3.26 114 67 0.61 59.04±2.17 0.0231±0.0126 108.3± 3.9 111.7± 3.9	UYS1_29.1	3.26	114	67	0.61	59.04 ± 2.17	0.0231 ± 0.0126	108.3 ± 3.9	111.7 ± 3.9			
UYS1_30.1 0.81 311 111 0.37 58.40 ± 1.39 0.0521 ± 0.0061 109.5 ± 2.6 108.9 ± 2.6	UYS1_30.1	0.81	311	111	0.37	58.40 ± 1.39	0.0521 ± 0.0061	109.5 ± 2.6	108.9 ± 2.6			N
UTS1_11.1 U.UU 154 48 U.52 $58.8/\pm 1.04$ U.0005 ± 0.0041 $165./\pm 4.5$ 163.5 ± 4.4 N UYS1 32.1 0.00 260 128 0.51 52.98 ± 1.12 0.0425 ± 0.0031 120 5 ± 2.5 120 5 ± 2.5 N	UYSI_31.1 UYSI_32.1	0.00	154 260	48 128	0.32	58.87 ± 1.04 52.98 ± 1.12	0.0505 ± 0.0041 0.0425 ± 0.0031	103.7 ± 4.3 120.5 ± 2.5	103.5 ± 4.4 120.5 ± 2.5			IN N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS1_33.1	0.49	245	127	0.53	54.55 ± 1.33	0.0461 ± 0.0063	117.1 ± 2.8	117.4 ± 2.8			N
UYS1_34.1 0.76 259 120 0.48 56.43 ± 1.50 0.0438 ± 0.0066 113.2 ± 3.0 113.9 ± 2.9	UYS1_34.1	0.76	259	120	0.48	56.43 ± 1.50	0.0438 ± 0.0066	113.2 ± 3.0	113.9 ± 2.9			
UYS1_55.1 1.46 163 133 0.83 24.01 ± 0.58 0.0424 ± 0.0078 263.0 \pm 6.3 266.0 \pm 6.1 N	UYS1_35.1	1.46	163	133	0.83	24.01 ± 0.58 50 14 ± 0.02	0.0424 ± 0.0078 0.0499 ± 0.0022	263.0 ± 6.3 127.2 ± 2.2	266.0 ± 6.1 127.1 + 2.4			N N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UYS2 01.1	0.00	808	146	0.18	54.59 ± 1.08	0.0535 ± 0.0032	127.3 ± 2.3 117.0 ± 2.3	127.1 ± 2.4 116.3 ± 2.3			N
$ UYS2_01.2 0.00 88 36 0.43 60.14 \pm 2.52 0.0679 \pm 0.0095 106.3 \pm 4.4 103.7 \pm 4.5 \qquad \text{D, N} $	UYS2_01.2	0.00	88	36	0.43	60.14 ± 2.52	0.0679 ± 0.0095	106.3 ± 4.4	103.7 ± 4.5			D, N
UYS2_02.1 0.07 248 74 0.31 63.27 ± 1.64 0.0539 ± 0.0059 101.1 \pm 2.6 100.3 \pm 2.6 UVS2_02.2 2.66 114 64 0.58 66.22 \pm 2.36 0.0200 \pm 0.0141 0.66 \pm 3.4 0.92 \pm 3.2	UY\$2_02.1	0.07	248	74 64	0.31	63.27 ± 1.64	0.0539 ± 0.0059 0.0200 ± 0.0141	101.1 ± 2.6 96.6 + 3.4	100.3 ± 2.6 99.2 + 3.2			

Tsutsumi and Tani

Table 1. Continued.

						10010 11 0					
Labels	²⁰⁶ Pb _c ⁽¹⁾	U (ppm)	Th (ppm)	Th/U	²³⁸ U/ ²⁰⁶ Pb* ⁽¹⁾	²⁰⁷ Pb*/ ²⁰⁶ Pb* (1)	²³⁸ U- ²⁰⁶ Pb* age ⁽¹⁾	²³⁸ U- ²⁰⁶ Pb* age ⁽²⁾	²⁰⁷ Pb*/ ²⁰⁶ Pb* age ⁽¹⁾	$Disc^{(3)}$	Remarks
UVS2_03_1	0.41	76	(Ppm) 69	0.94	61.12 ± 2.90	0.0237 ± 0.0184	104.6± 4.9	105.0 ± 4.4	(1111)	(/0)	
UYS2 04.1	0.00	585	299	0.52	66.20 ± 1.24	0.0237 ± 0.0030 0.0509 ± 0.0030	96.7 ± 1.8	96.3 ± 1.8			
UYS2_05.1	0.00	171	242	1.45	68.19 ± 1.98	0.0509 ± 0.0048	93.8 ± 2.7	$93.5\pm~2.8$			
UYS2_06.1	0.00	170	169	1.02	63.81 ± 2.24	0.0442 ± 0.0054	100.2 ± 3.5	100.2 ± 3.5 102.2 \pm 4.0			
UYS2_07.1 UYS2_08_1	0.00	104 600	95 149	0.94	61.89 ± 2.41 62.79 ± 1.28	0.0378 ± 0.0060 0.0579 ± 0.0029	103.3 ± 4.0 101.9 ± 2.1	103.3 ± 4.0 100.6 ± 2.1			DN
UYS2 08.2	0.00	53	44	0.86	62.84 ± 3.00	0.0396 ± 0.0105	101.9 ± 4.8	101.8 ± 4.8			2,11
UYS2_09.1	0.04	189	61	0.33	63.78 ± 1.86	0.0430 ± 0.0062	100.3 ± 2.9	100.3 ± 2.8			
UYS2_10.1	0.00	102	89	0.89	66.68 ± 2.43	0.0369 ± 0.0067	96.0 ± 3.5	96.0 ± 3.5			
UYS2_11.1 UVS2_12_1	0.42	191	46	0.25	64.84 ± 1.85 68.82 ± 2.11	0.0482 ± 0.0072 0.0452 ± 0.0090	98.7 ± 2.8 93.0 ± 2.8	98.6 ± 2.8 93.3 ± 2.8			
UYS2 13.1	0.00	311	87	0.29	66.69 ± 1.65	0.0523 ± 0.0037	95.9 ± 2.4	95.4 ± 2.4			
UYS2_14.1	0.00	482	354	0.75	66.75 ± 1.27	0.0486 ± 0.0030	95.9 ± 1.8	95.8 ± 1.8			
UYS2_15.1	0.00	273	131	0.49	59.71 ± 1.59	0.0508 ± 0.0048	107.1 ± 2.8	106.7 ± 2.9			
UYS2_16.1	0.77	134	104	0.79	65.97 ± 2.46 56 59 ± 1.74	0.0381 ± 0.0138 0.0539 ± 0.0058	97.0 ± 3.6	$9/.7 \pm 3.3$ 112.1 ± 3.5			N
UYS2 19.1	0.00	142	120	0.21	50.39 ± 1.74 64.73 ± 2.18	0.0339 ± 0.0038 0.0413 ± 0.0054	98.8 ± 3.3	98.8 ± 3.3			19
UYS2_20.1	0.00	166	92	0.56	65.65 ± 1.85	0.0454 ± 0.0043	97.4 ± 2.7	97.4 ± 2.7			
UYS2_21.1	0.08	436	98	0.23	66.90 ± 1.61	0.0505 ± 0.0047	95.7 ± 2.3	95.3 ± 2.3			
UYS2_22.1	0.00	99	74	0.77	71.02 ± 2.25	0.0747 ± 0.0116	90.1 ± 2.8	87.1 ± 3.0			D, N
UYS2_23.1	0.18	249	259	0.21	57.13 ± 1.42 71 14 ± 1 71	$0.04/3 \pm 0.004/$ 0.0499 ± 0.0040	90.0 ± 2.8	112.0 ± 2.8 89.7 \pm 2.2			N
UYS2 25.1	0.00	294	78	0.27	65.23 ± 1.61	0.0475 ± 0.0033	98.1 ± 2.4	98.1 ± 2.4			14
UYS2_25.2	0.00	92	34	0.38	66.47 ± 2.42	0.0652 ± 0.0089	96.3 ± 3.5	94.2 ± 3.6			
UYS2_26.1	0.00	325	113	0.36	66.80 ± 1.40	0.0458 ± 0.0034	95.8 ± 2.0	95.8 ± 2.0			
UYS2_27.1	0.55	101	108	1.09	67.93 ± 3.02	0.0531 ± 0.0185 0.1125 ± 0.0012	94.2 ± 4.2	93.6 ± 3.8	1942 + 19	10.6	N
UYS2 28.2	0.00	700	294 64	0.43	62.45 ± 3.16	0.0595 ± 0.0012	1040.4 ± 18.0 102.4 ± 5.1	1027.4 ± 18.0 100.9 ± 5.2	1042 - 10	10.0	IN
UYS2 29.1	0.00	77	58	0.76	69.10 ± 2.67	0.0433 ± 0.0073	92.6 ± 3.6	92.6 ± 3.6			
UYS2_30.1	0.35	1409	672	0.49	63.06 ± 0.80	0.0460 ± 0.0026	101.4 ± 1.3	101.7 ± 1.3			
UYS2_31.1	0.00	262	93	0.36	62.57 ± 1.41	0.0462 ± 0.0036	102.2 ± 2.3	102.2 ± 2.3			
UYS2_32.1	0.57	226	79 53	0.36	67.02 ± 1.81	0.0479 ± 0.0065 0.0454 ± 0.0065	95.5 ± 2.6 96.1 ± 3.6	95.5 ± 2.5 96.1 ± 3.6			
UYS2 34.1	0.00	554	26	0.01	56.31 ± 1.08	0.0459 ± 0.0005	113.5 ± 2.2	113.5 ± 2.2			Ν
UYS2_34.2	0.68	95	39	0.42	70.96 ± 2.76	0.0388 ± 0.0119	90.2 ± 3.5	90.8 ± 3.4			
UYS2_35.1	0.00	180	159	0.91	65.73 ± 1.74	0.0473 ± 0.0044	97.3 ± 2.6	97.3 ± 2.6			
UYS2_36.1	1.57	409	83	0.21	38.35 ± 0.67	0.0447 ± 0.0038	165.9 ± 2.9	166.9 ± 2.9			Ν
UYS2_36.2 UVS2_37_1	0.00	194 244	223	0.61	63.29 ± 1.73 65.67 ± 1.74	$0.049 / \pm 0.004 /$ 0.0432 ± 0.0036	101.1 ± 2.7 97.4 ± 2.6	100.8 ± 2.8 97.4 + 2.6			
UYS2 38.1	0.00	132	45	0.35	56.78 ± 1.73	0.0432 ± 0.0030 0.0444 ± 0.0054	112.5 ± 3.4	112.5 ± 3.4			Ν
GJM1_01.1	0.00	727	233	0.33	58.15 ± 0.78	0.0534 ± 0.0019	109.9 ± 1.5	109.2 ± 1.5			D, N
GJM1_02.1	0.07	541	202	0.38	57.57 ± 0.83	0.0503 ± 0.0031	111.0 ± 1.6	110.7 ± 1.6			
GJM1_03.1	0.00	836	331	0.41	63.63 ± 0.90	0.0524 ± 0.0018	100.5 ± 1.4	100.0 ± 1.4			D, N
GJM1_04.1 GIM1_05.1	0.14	987 584	355 248	0.37	60.58 ± 0.76 57 31 ± 0.84	0.0514 ± 0.0033 0.0481 ± 0.0033	105.5 ± 1.3 111.5 ± 1.6	105.1 ± 1.3 111.5 ± 1.6			
GJM1_05.2	0.77	673	249	0.38	58.65 ± 0.83	0.0462 ± 0.0035	109.0 ± 1.5	109.3 ± 1.5			
GJM1_06.1	0.18	755	214	0.29	58.45 ± 0.76	0.0484 ± 0.0027	109.3 ± 1.4	109.3 ± 1.4			
GJM1_07.1	0.00	1631	992	0.62	60.29 ± 0.63	0.0489 ± 0.0013	106.0 ± 1.1	105.9 ± 1.1			
GJM1_08.1	0.00	587	238	0.42	55.31 ± 0.79	0.0477 ± 0.0022	115.5 ± 1.6 107.4 \pm 1.5	115.5 ± 1.6 107.4 \pm 1.4			Ν
GIM1_09.1	0.04	543	420	0.33	59.33 ± 0.82 59.99 ± 1.00	0.0482 ± 0.0034 0.0493 ± 0.0049	107.4 ± 1.3 106.6 ± 1.8	107.4 ± 1.4 106.4 ± 1.7			
GJM1 11.1	0.00	922	428	0.48	58.55 ± 0.78	0.0455 ± 0.0017	109.2 ± 1.4	109.2 ± 1.4			
GJM1_12.1	0.00	1071	341	0.33	58.69 ± 0.75	0.0493 ± 0.0016	108.9 ± 1.4	108.8 ± 1.4			
GJM1_13.1	1.47	938	423	0.46	61.24 ± 0.89	0.0438 ± 0.0039	104.4 ± 1.5	105.0 ± 1.5			
GIM1_15.1 GIM1_16.1	0.00	1330	809	0.62	57.13 ± 0.70 59.08 ± 0.71	0.0490 ± 0.0013 0.0552 ± 0.0025	111.9 ± 1.4 108.2 ± 1.3	111.8 ± 1.4 107.3 ± 1.3			DN
GJM1_10.1	1.08	709	256	0.37	59.17 ± 0.88	0.0455 ± 0.0025	108.0 ± 1.6	107.5 = 1.5 108.4 ± 1.6			2,11
GJM1_18.1	0.00	863	325	0.39	60.32 ± 0.87	0.0515 ± 0.0017	106.0 ± 1.5	105.6 ± 1.5			
GJM1_19.1	0.29	1113	449	0.41	61.09 ± 0.76	0.0454 ± 0.0025	104.7 ± 1.3	105.0 ± 1.3			
GJM1_20.1	0.00	1501	733	0.50	58.90 ± 0.64	0.0486 ± 0.0014 0.0509 ± 0.0018	108.5 ± 1.2 105.9 ± 1.5	108.5 ± 1.2 105.6 ± 1.5			
GJM1_21.1	0.00	1568	1795	1.17	58.90 ± 0.74	0.0473 ± 0.0013	103.5 ± 1.3 108.5 ± 1.4	103.5 ± 1.3 108.5 ± 1.4			
GJM1_23.1	0.00	796	614	0.79	58.50 ± 0.77	0.0488 ± 0.0018	109.3 ± 1.4	109.2 ± 1.5			
GJM1_27.1	0.00	1810	1093	0.62	58.40 ± 0.67	0.0483 ± 0.0013	109.4 ± 1.3	109.4 ± 1.3			
GJM1_29.1	0.00	407	199	0.50	60.06 ± 1.04	0.0509 ± 0.0026	106.4 ± 1.8	106.1 ± 1.8			
GJM1_30.1 GJM1_31_1	0.18	733	243	0.33	59.52 ± 0.88 57.52 ± 0.90	0.0340 ± 0.0031 0.0471 ± 0.0030	107.4 ± 1.0 111.1 ± 1.7	100.0 ± 1.0 111.3 ± 1.7			
GJM1 32.1	0.37	548	285	0.53	58.96 ± 0.97	0.0491 ± 0.0042	108.4 ± 1.8	108.3 ± 1.7			
GJM1_33.1	0.67	848	308	0.37	59.89 ± 1.01	0.0446 ± 0.0035	106.7 ± 1.8	107.2 ± 1.8			
GJM1_34.1	0.33	747	265	0.36	57.47 ± 0.83	0.0474 ± 0.0036	111.2 ± 1.6	111.3 ± 1.6			N
GJM1_35.1 GIM2_01_1	0.09	351	46	0.13	54.67 ± 1.12 62.98 ± 1.07	0.0461 ± 0.0037 0.0427 ± 0.0094	116.9 ± 2.4 101.5 ± 2.2	117.0 ± 2.3 102.2 ± 2.1			N
GJM2_01.2	0.00	1488	525	0.36	52.79 ± 0.81	0.0477 ± 0.0014	101.3 = 3.2 108.7 ± 1.5	102.2 = 3.1 108.7 ± 1.5			
GJM2_02.1	0.00	118	61	0.53	59.67 ± 1.94	0.0421 ± 0.0059	107.1 ± 3.5	107.1 ± 3.5			
GJM2_03.1	0.00	549	262	0.49	55.06 ± 0.94	0.0475 ± 0.0024	116.0 ± 2.0	116.0 ± 2.0			Ν
GJM2_04.1	0.36	147	71	0.49	61.81 ± 1.75 54.82 ± 1.00	0.0338 ± 0.0079 0.0422 ± 0.0040	103.5 ± 2.9 116.5 ± 2.1	103.8 ± 2.8 117.2 ± 2.1			N
GJM2_05.1 GJM2_06.1	0.30	818	230	0.45	54.65 ± 1.00 59.67 ± 1.04	0.0422 ± 0.0040 0.0491 ± 0.0021	110.3 ± 2.1 107.1 ± 1.9	117.2 ± 2.1 107.0 ± 1.9			1N
GJM2 07.1	0.07	1316	601	0.47	62.12 ± 0.91	0.0475 ± 0.0029	103.0 ± 1.5	103.0 ± 1.5			
GJM2_08.1	0.25	499	216	0.44	56.59 ± 1.12	0.0487 ± 0.0040	112.9 ± 2.2	112.8 ± 2.2			
GJM2_09.1	0.02	1177	568	0.50	58.71 ± 0.96	0.0503 ± 0.0030	108.9 ± 1.8	108.6 ± 1.7			
GIM2_10.1 GIM2_11_1	0.10	1212	487	0.41	$5/.33 \pm 0.86$ 51.66 ± 0.87	$0.048 / \pm 0.0027$ 0.0487 ± 0.0026	111.5 ± 1.6 123.6 ± 2.1	111.4 ± 1.7 123.5 ± 2.1			N
GJM2_11.1 GJM2_12.1	0.03	476	175	0.38	57.51 ± 1.08	0.0414 ± 0.0020	123.0 ± 2.1 111.1 ± 2.1	123.3 ± 2.0 111.2 ± 2.0			1.4
GJM2_13.1	0.25	841	373	0.45	60.38 ± 1.03	0.0441 ± 0.0034	105.9 ± 1.8	106.2 ± 1.8			
GJM2_14.1	0.00	1599	871	0.56	57.93 ± 0.90	0.0494 ± 0.0015	110.3 ± 1.7	110.2 ± 1.7			
GJM2 15.1	0.45	397	157	0.41	59.36 ± 1.14	0.0443 ± 0.0046	107.7 ± 2.1	108.2 ± 2.0			

Labels	²⁰⁶ Pb _c ⁽¹⁾	U	Th	Th/II	23811/206 Db * (1)	207ph*/206ph* (1)	²³⁸ U- ²⁰⁶ Pb* age (1)	²³⁸ U- ²⁰⁶ Pb* age (2)	²⁰⁷ Pb*/ ²⁰⁶ Pb* age ⁽¹⁾	Disc ⁽³⁾	Demorks
Labels	(%)	(ppm)	(ppm)	11/0	0/ 10	10 / 10	(Ma)	(Ma)	(Ma)	(%)	Remarks
GJM2 15.2	0.00	1233	389	0.32	56.07 ± 0.79	0.0472 ± 0.0016	114.0 ± 1.6	114.0 ± 1.6			
GJM2 16.1	0.00	723	257	0.36	59.87 ± 0.90	0.0403 ± 0.0017	106.8 ± 1.6	106.8 ± 1.6			D, N
GJM2 17.1	0.00	1469	540	0.38	60.85 ± 0.78	0.0491 ± 0.0018	105.1 ± 1.3	104.9 ± 1.4			
GJM2_18.1	0.00	1086	531	0.50	59.40 ± 0.85	0.0487 ± 0.0020	107.6 ± 1.5	107.5 ± 1.6			
GJM2_19.1	0.00	1080	410	0.39	58.11 ± 0.85	0.0484 ± 0.0018	110.0 ± 1.6	110.0 ± 1.6			
GJM2_20.1	0.00	547	231	0.43	58.25 ± 0.99	0.0492 ± 0.0026	109.7 ± 1.9	109.6 ± 1.9			
GJM2_21.1	0.00	165	104	0.65	57.00 ± 1.59	0.0601 ± 0.0059	112.1 ± 3.1	110.4 ± 3.2			D, N
GJM2_21.2	0.00	920	413	0.46	61.82 ± 0.94	0.0497 ± 0.0021	103.4 ± 1.6	103.2 ± 1.6			
GJM2_22.1	0.30	350	184	0.54	59.86 ± 1.23	0.0428 ± 0.0060	106.8 ± 2.2	107.1 ± 2.1			
GJM2_23.1	0.00	208	540 104	0.55	60.13 ± 0.80 56.55 ± 1.27	0.0490 ± 0.0021 0.0520 ± 0.0048	100.3 ± 1.4 112.0 ± 2.7	100.2 ± 1.4 112.2 ± 2.8			
GIM2_24.1	0.00	1180	475	0.31	50.55 ± 1.57 58 15 ± 0.83	0.0339 ± 0.0048 0.0474 ± 0.0017	113.0 ± 2.7 109.9 ± 1.6	112.2 ± 2.8 109.9 ± 1.6			
GIM2_24.2	0.00	904	367	0.41	58.13 ± 0.83	0.0474 ± 0.0017 0.0488 ± 0.0023	109.9 ± 1.0 110.1 ± 1.6	109.9 ± 1.0 110.1 ± 1.6			
GIM2_25.1	0.00	2088	1545	0.76	60.60 ± 0.76	0.0468 ± 0.0013	105.5 ± 1.3	105.5 ± 1.3			
GJM2 27.1	0.13	847	452	0.55	59.65 ± 0.93	0.0444 ± 0.0042	107.2 ± 1.7	107.3 ± 1.6			
GJM2 28.1	0.28	121	62	0.52	57.02 ± 1.86	0.0335 ± 0.0095	112.1 ± 3.6	112.4 ± 3.5			
GJM2 28.2	0.00	1173	491	0.43	58.18 ± 0.85	0.0499 ± 0.0020	109.9 ± 1.6	109.6 ± 1.6			
GJM2_29.1	0.08	1202	463	0.40	59.26 ± 0.89	0.0467 ± 0.0029	107.9 ± 1.6	107.9 ± 1.6			
GJM2_30.1	0.00	1009	381	0.39	59.78 ± 0.84	0.0463 ± 0.0019	106.9 ± 1.5	106.9 ± 1.5			
GJM2_31.1	0.02	1339	1697	1.30	61.76 ± 0.93	0.0516 ± 0.0052	103.5 ± 1.5	103.1 ± 1.4			
GJM2_32.1	0.00	819	381	0.48	57.77 ± 0.91	0.0476 ± 0.0020	110.6 ± 1.7	110.6 ± 1.7			
GJM2_33.1	0.00	682	314	0.47	57.04 ± 1.06	0.0486 ± 0.0025	112.0 ± 2.1	112.0 ± 2.1			
GJM2_34.1	0.00	1147	421	0.38	57.85 ± 0.88	0.0515 ± 0.0020	110.5 ± 1.7	110.0 ± 1.7			
GJM2_36.1	0.22	2673	809	0.31	56.69 ± 0.82	0.0450 ± 0.0017	112.7 ± 1.6	113.0 ± 1.6			
GJM2_37.1	0.89	418	130	0.32	57.65 ± 1.13	0.0439 ± 0.0049	110.9 ± 2.2	111.5 ± 2.2			
GJM2_38.1	0.42	897	341	0.39	57.14 ± 1.03	0.0466 ± 0.0034	111.8 ± 2.0	112.1 ± 2.0			
GJM2_39.1	0.00	1984	1185	0.61	59.18 ± 0.84	0.0485 ± 0.0012	108.0 ± 1.5	108.0 ± 1.5			
GJM2_40.1	0.00	/4/	3/0	0.51	60.74 ± 1.16	$0.04/5 \pm 0.0022$	105.3 ± 2.0	105.3 ± 2.0			
KTZ_01.1	1.24	804	177	0.74	50.55 ± 0.92 57.76 ± 0.80	0.0487 ± 0.0044 0.0464 ± 0.0019	113.4 ± 1.8 110.7 ± 1.7	113.4 ± 1.8 110.7 ± 1.7			
KTZ_02.1	1 11	542	136	0.20	57.70 ± 0.89 58 59 ± 1.08	0.0404 ± 0.0019 0.0481 ± 0.0042	110.7 ± 1.7 109.1 ± 2.0	110.7 ± 1.7 109.1 ± 2.0			
KTZ_04.1	0.00	1021	150	0.15	58.68 ± 0.90	0.0401 ± 0.0042 0.0504 ± 0.0019	109.1 = 2.0 108.9 ± 1.7	109.1 = 2.0 108.6 ± 1.7			
KTZ_05.1	0.00	665	378	0.58	57.07 ± 1.00	0.0501 ± 0.0026	112.0 ± 1.9	111.6 ± 2.0			
KTZ 06.1	0.21	753	250	0.34	57.17 ± 0.97	0.0492 ± 0.0032	111.8 ± 1.9	111.7 ± 1.9			
KTZ 08.1	0.11	736	359	0.50	37.25 ± 0.52	0.0444 ± 0.0032	170.8 ± 2.4	171.0 ± 2.3			Ν
KTZ 08.2	0.00	1162	344	0.30	54.10 ± 0.73	0.0469 ± 0.0018	118.1 ± 1.6	118.1 ± 1.6			Ν
KTZ_10.1	0.00	2687	2490	0.95	58.14 ± 0.73	0.0474 ± 0.0011	109.9 ± 1.4	109.9 ± 1.4			
KTZ_11.1	0.25	1605	308	0.20	57.35 ± 0.80	0.0466 ± 0.0022	111.4 ± 1.5	111.7 ± 1.5			
KTZ_12.1	0.00	432	122	0.29	56.88 ± 1.19	0.0446 ± 0.0035	112.3 ± 2.3	112.3 ± 2.3			
KTZ_13.1	0.00	1876	742	0.41	55.63 ± 0.76	0.0471 ± 0.0013	114.8 ± 1.5	114.8 ± 1.5			
KTZ_14.1	0.07	986	493	0.51	55.85 ± 0.93	0.0479 ± 0.0037	114.4 ± 1.9	114.5 ± 1.9			
KTZ_15.1	0.00	1817	535	0.30	55.52 ± 0.75	0.0495 ± 0.0016	115.1 ± 1.5	114.9 ± 1.5			D 11
K1Z_16.1	0.00	877	445	0.52	58.44 ± 0.96	0.0528 ± 0.0021	109.4 ± 1.8	108.8 ± 1.8			D, N
KIZ_1/.1	1.48	742	432	0.60	59.73 ± 1.02	0.0485 ± 0.0051	$10/.0 \pm 1.8$ 107.2 ± 1.5	$10/.0 \pm 1.8$ 107.2 ± 1.5			
KTZ 10.1	0.55	2083	992 2480	1.23	39.00 ± 0.87 58.76 ± 0.76	$0.04/1 \pm 0.0028$ 0.0510 ± 0.0012	107.2 ± 1.5 108.8 ± 1.4	10/.5 - 1.5 108.4 + 1.4			D N
KTZ 19.1	0.00	1414	304	0.22	56.70 ± 0.70	0.0510 ± 0.0013 0.0541 ± 0.0023	112.6 ± 1.4	100.4 ± 1.4 111.7 ± 1.6			D N
KTZ 20.1	0.00	106	72	0.70	58.84 ± 2.09	0.0597 ± 0.0025	108.6 ± 3.8	107.1 ± 3.9			2,11
KTZ 22.1	0.03	1480	48	0.03	59.69 ± 0.79	0.0494 ± 0.0018	107.1 ± 1.4	106.9 ± 1.4			
KTZ 23.1	0.89	709	77	0.11	58.02 ± 1.05	0.0422 ± 0.0037	110.2 ± 2.0	111.0 ± 2.0			
KTZ 23.2	4.19	2982	1018	0.35	57.71 ± 0.89	0.0545 ± 0.0085	110.8 ± 1.7	109.9 ± 1.7			
KTZ_24.1	0.38	1403	646	0.47	57.56 ± 0.88	0.0515 ± 0.0032	111.0 ± 1.7	110.6 ± 1.7			
KTZ_25.1	0.00	1016	804	0.81	58.72 ± 1.06	0.0608 ± 0.0023	108.9 ± 2.0	107.2 ± 1.9			D, N
KTZ_26.1	0.00	374	187	0.51	59.24 ± 1.21	0.0425 ± 0.0033	107.9 ± 2.2	107.9 ± 2.2			
KTZ_27.1	0.00	2163	1515	0.72	59.45 ± 0.83	0.0488 ± 0.0011	107.5 ± 1.5	107.4 ± 1.5			
KTZ_28.1	0.00	1622	676	0.43	59.31 ± 0.80	0.0547 ± 0.0017	107.8 ± 1.4	106.9 ± 1.5			D, N
KTZ_29.1	0.00	2934	1227	0.43	58.25 ± 0.74	0.0496 ± 0.0011	109.7 ± 1.4	109.5 ± 1.4			
KTZ_31.1	0.13	1793	804	0.46	57.67 ± 0.87	0.0570 ± 0.0048	110.8 ± 1.7	109.6 ± 1.6			
KTZ_32.1	1.09	421	212	0.52	55.25 ± 1.18	0.0396 ± 0.0058	115.6 ± 2.5	116.9 ± 2.4			N
KIZ_33.1	0.00	1580	928	0.60	59.63 ± 0.90	0.0484 ± 0.0015	$10/.2 \pm 1.6$	107.2 ± 1.6			N
KIZ_34.1	0.00	2003	1363	0.62	54.39 ± 0.75	0.0486 ± 0.0012	$11/.5 \pm 1.6$	$11/.4 \pm 1.6$			IN

Table 1. Continued

Errors are 1-sigma; Pb, and Pb* indicate the common and radiogenic portions, respectively.

Remarks; D: discordant, N: not used for weighted mean age calculation

⁽¹⁾ Common Pb corrected by assuming ²⁰⁶Pb/²³⁸U–²⁰⁸Pb/²³²Th age-concordance
⁽²⁾ Common Pb corrected by assuming ²⁰⁶Pb/²³⁸U–²⁰⁷Pb/²³⁵U age-concordance

⁽³⁾ The degree of discordance for an analyzed spot indicates the chronological difference between the two ages determined by Pb–Pb and U–Pb methods, and is defined as $\{1-(^{238}U/^{206}Pb^* \text{ age})/(^{207}Pb^*/^{206}Pb^* \text{ age})\} \times 100$ (%) (e.g., Song *et al.*, 1996).

indicates 98.0 ± 1.2 Ma (MSWD = 1.63, Fig. 5E).

GJM1: Gyojamisaki plutonic complex

The sample was collected from a quarry, southeastern part of the Kunisaki City, Oita Prefecture (lat: N 33°26'55.6", long: E 131°40'16.6"). This is a medium-grained weathered granite. The registration number is 138244.

Most of zircon grains are partly rounded and are

140 to $220 \mu m$ in length with elongation ratios of 1.7 to 3.3. CL images of the grains are relatively bright with distinct oscillatory and/or sector zoning. 31 spots from 30 grains were analyzed and 28 data were concordant. Concordant data indicate 105-116 Ma. After 2 older data were excluded, the weighted mean age of 26 data indicates 108.0 ± 0.9 Ma (MSWD = 2.18, Fig. 5F).

Fig. 4. Tera-Wasserberg U–Pb concordia diagrams of zircons from the samples. Error ellipses are 68.3% conf. Solid ellipses: concordant data; broken ellipses: discordant data; filled ellipses: used for age calculation.

GJM2: Gyojamisaki plutonic complex

The sample was collected from eastern coast of Kunisaki Peninsula, near the Oita airport (lat: N 33°29'33.0", long: E 131°43'48.8"). This is a coarsegrained biotite granite. The major minerals of this rock are plagioclase, quartz, alkali feldspar and biotite. Plagioclase occurs as euhedral to subhedral crystal and exhibits indistinct albite twin and oscillatory zoning. Undulatory extinction is observed in quartz. Opaque minerals are common accessory minerals. The registration number is 138245.

Most of zircon grains are prismatic and are 140 to $280\,\mu\text{m}$ in length with elongation ratios of 1.4 to 3.0. CL images of the grains are relatively bright with distinct oscillatory zoning. 44 spots from 39 grains were analyzed and 42 data are concordant. Concordant data indicate 102–117 Ma and 124 Ma.

After 3 older data were excluded, the weighted mean age of 39 data indicates 108.2 ± 1.0 Ma (MSWD = 2.98, Fig. 5G).

KTZ: Kurotsuzaki area

The sample was collected from eastern coast of Kunisaki Peninsula, north of the Oita airport (lat: N 33°32'34.0", long: E 131°44'40.0"). This is a medium grained biotite granite. The major minerals of this rock are plagioclase, quartz, alkali feldspar and biotite. Plagioclase occurs as euhedral to subhedral crystal and exhibits indistinct albite twin and oscillatory zoning. Undulatory extinction is observed in quartz. Opaque minerals are common accessory minerals. The registration number is 138246.

Most of zircon grains are prismatic and are 120 to

 $300\,\mu\text{m}$ in length with elongation ratios of 2.1 to 5.0. CL images of the grains are relatively bright with distinct oscillatory zoning. 33 spots from 31 grains were analyzed and 28 data are concordant. Concordant data indicate 107–118 Ma and 171 Ma. After 4 older data were excluded, the weighted mean age of 24 data indicates 110.2 ± 1.1 Ma (MSWD = 2.26, Fig. 5H).

Discussion

Formation age of the granitoids in the Kunisaki district

Zircon U-Pb age is commonly interpreted to indicate the plutonic age of granitoids because of the high closure temperature of the decay system and robust nature of the crystal. Granite samples from western part of the Kunisaki district, the Yamakunigawa, Ajimu and Ushiyashiki areas, YKG1, YKG2, MRT and USY2 indicated $95.5 \pm 1.0 \text{ Ma}$, $95.5 \pm 1.0 \text{ Ma}$, $100.4 \pm 1.2 \text{ Ma}$ and 98.0 ± 1.2 Ma, respectively, and the ages ranged from 96 Ma to 100 Ma. Whereas granite samples from eastern part of the district, the Gyojamisaki, Kurotsuzaki areas and granodiorite sample from the Ushiyashiki area, GJM1, GJM2, KTZ and USY1 indicated 108.0 ± 0.9 Ma, 108.2 ± 1.0 Ma, 110.2 ± 1.1 Ma and 110.8 ± 1.1 Ma, respectively, and the ages are relatively older than the ages from the western part. Both the older and younger granitoids occur in the Ushiyashiki area. The Gyojamisaki Plutonic Complex and rocks in the Kurotsuzaki area consist of both felsic granitic rocks and mafic gabbro and diorite. All mafic rocks coexist with granitic rocks as syn-plutonic dikes and mafic magmatic enclaves, strongly suggesting contemporaneous magmatism with the granitic activity. The ages of the granitic samples may also reflect the age of mafic magmatism.

Zoning of the granitoids (Murakami, 1994) together with the zircon age results, indicates that the ages of the granitoids in the Kunisaki district broadly become younger from oceanic side to continental side, from southeast to northwest. The same age trend is also observed on the western side of central to northern Kyushu (Owada et al, 1999; Tsutsumi, 2022).

Western extension of the Ryoke belt in Kyushu

The zircon U-Pb ages of granitoids in the western part of the Kunisaki district are consistent with the ages of the Yanai and Takanawa districts of the Ryoke belt where ages are 94–105 Ma (Skrzypek et al., 2016), and 89–99 Ma (Shimooka et al., 2019), respectively. The western part of the Kunisaki district is interpreted to be an extension of the Ryoke belt on the basis of geographic continuity, zircon age similarity and presence of high-T type metamorphics. The ages of the granitoids in the eastern part of the Kunisaki district are consistent with the Higo Plutonic Complex (108–113 Ma; Tsutsumi, 2022) rather than the younger Ryoke granitoids. The western extent of the Ryoke belt in Kyushu remains unclear because exposed basement rocks are scarce in central Kyusyu due to tectonic subsidence and post-Cretaceous volcaniclastic cover.

In the Chikuhi district, western side of central Kyushu, the ages of the granitoids indicate ca. 106 Ma (Miyazaki et al., 2019; Tsutsumi, 2021). High-T type metamorphics have been recognized there. This district was interpreted to be the western extension of the Ryoke belt because of the similar metamorphic grade of the Konoha metamorphic rocks (Fujimoto and Hashimoto, 1960), but there is a possibility that the Konoha metamorphic rocks are a contact metamorphosed part of the Suo belt because the high-grade part occurs along the margin of the Tamana granodiorite (Karakida et al., 1969). Hence, the attribution of the Konoha metamorphic rocks remains unresolved. The metamorphic complex in the Omuta area is not contact metamorphosed but rather is the product of regional metamorphism. Isograds are not parallel with the Tamana granodiorite, and the grade of metamorphism is similar to the metamorphic rocks in the Yanai district (Ikeda et al., 2017). The metamorphic rim of a zircon grain from the metamorphic rocks indicated a concordant age of 105.1 ± 5.3 Ma (2σ) and is considered to be the age of the regional metamorphism (Miyazaki et al., 2017). Miyazaki et al. (2017) proposed that the Omuta area is the western extension of the Ryoke belt in the western side of Kyushu based on nature of the metamorphics, geographic direction and age similarity. However, regional metamorphism in the Yanai district occurred from 100 to 94 Ma (Skrzypek et al., 2016),

Fig. 5. Probability distribution diagrams, histograms and age scatter plots of zircon ages from the samples. Conc.: concordant, Calc.: used for age calculation.

5 Myr younger than the Omuta district. Therefore, the Ryoke belt in the western side of the central Kyushu is still not confirmed.

Difference of zircon U–Pb ages and the other radiometric ages

New zircon ages of this study and most zircon ages previously reported from Kyushu granitoids are older than published K–Ar ages (Tsutsumi, 2021, 2022; Tsutsumi and Tani, 2022, and references therein). Re-examination of K–Ar ages of granitoids in Kyushu may be necessary (Tsutsumi and Tani, 2022). Here we consider why zircon U–Pb ages and WRI RB–Sr ages are different.

The WRI Rb-Sr age obtained by analyzing various plutonic rock samples from all over the Gyojamisaki and Kurotsuzaki areas is 142.2 ± 2.1 Ma $(2\sigma, \text{Osanai et al.}, 1993)$. This is far older than zircon ages of this study. WRI Rb-Sr ages are obtained using samples which although lithologically similar, may not all be the same age. For example, although the WRI Rb-Sr age of the Itoshima granodiorite in northern Kyushu indicated $116 \pm 17 \operatorname{Ma} (2\sigma, \operatorname{Owada} et al., 1999)$, the zircon U-Pb ages from northwestern, central and southeastern part of the Itoshima granodiorite indicated 102 ± 2 Ma (2σ , Adachi *et al.*, 2012), 105.6 ± 1.5 Ma and 97.9 ± 1.7 Ma (95% conf., Miyazaki et al., 2019), respectively. Because the ages of the Itoshima granodiorite vary between sampling locations, the Rb-Sr "isochron" is a pseudo-isochron. Therefore, isochrons which are obtained from the isotopic data of multiple samples from a granitoid body that are assumed to be part of the same magmatic event based on lithology alone, are unreliable. Future zircon U-Pb chronological studies may reveal further discords between WRI ages using multiple samples and individual sample zircon U-Pb ages.

Conclusions

Eight new zircon U–Pb ages of granitoids in the Kunisaki district, eastern part of northern Kyushu, are presented; the ages in western part of the district ranged from 96 Ma to 100 Ma while the ages in eastern part of the district ranged from 108 Ma to 110 Ma. These granitoids correspond to the Ryoke belt and the Higo Plutonic Complex, respectively. The granitoids in the district broadly become younger from oceanic side to continental side as well as the western side of central to northern

Somula nomo	Doolt body	Dec Ne ¹	Pools type	Locality		n of data	Ļ	Age	
Sample name	KOCK DOUY	Keg. No.	Rock type	Locality	All	Conc.	Calc.		MSWD
YKG1	Yamakunigawa	138218	weathered granite	N33°33′20.1″ E131°09′57.1″	41	40	33	95.5 ± 1.0	1.92
YKG2	Yamakunigawa	138219	biotite granite	N33°31′34.0″ E131°10′00.3″	41	38	31	95.5 ± 1.0	2.46
MRT	Maruta	138220	weathered	N33°21′14.0″ E131°23′55.9″	44	40	39	100.4 ± 1.2	1.55
UYS1	Ushiyashiki	138241	biotite	N33°27′59.3″ E131°30′42.6″	44	40	23	110.8 ± 1.1	0.50
UYS2	Ushiyashiki	138243	two mica granite	N 33°28'12.1" E 131°31'26.1"	44	41	33	98.0 ± 1.2	1.63
GJM1	Gyojamisaki	138244	weathered	N33°26′55.6″ E131°40′16.6″	31	28	26	108.0 ± 0.9	2.18
GJM2	Gyojamisaki	138245	biotite	N33°29′33.0″ E131°43′48.8″	44	42	39	108.2 ± 1.0	2.98
KTZ	Kurotsuzaki	138246	biotite granite	N33°32′34.0″ E131°44′40.0″	33	28	24	110.2 ± 1.1	2.26

Table 2. Summary of localities and weighted mean ages of each sample.

Age errors are 95% conf.; Conc.: concordant, Calc.: used for age calculation.

¹⁾ The redistration number of rock specimen in the collection database of the National Museum of Nature and Science (http://db.kahaku.go.jp/webmuseum_en/).

Kyushu. It is confirmed that the Ryoke belt extends to the eastern side of Kyushu, but remains unclear how far the Ryoke belt extends in Kyushu.

Acknowledgment

The authors thank Mrs. Y. Kusaba of the National Museum of Nature and Science for her help in SEM analysis and J. Fox for English editing. This work is conducted as a part of a project "Interpreting geological meanings of granitoids in southwest Japan" of National Museum of Nature and Science.

References

- Adachi, T., Osanai, Y., Nakano, N. and Owada, M. (2012) LA-ICP-MS U–Pb zircon and FE-EPMA U–Th–Pb monazite dating of pelitic granulites from the Mt. Ukidake area, Sefuri Mountains, northern Kyushu. *Journal of the Geological Society of Japan*, **118**: 39–52 (in Japanese with English abstract).
- Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S. and Foudoulis, C. (2004) Improved ²⁰⁶Pb/²³⁸U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. *Chemical Geology*, **205**: 115–140.
- Corfu, F., Hanchar, J. M., Hoskin, P. W. O. and Kinny, P. (2003) An atlas of zircon textures. In: Hanchar, J. M. and Hoskin, P. W. O. (Ed.), Zircon: Reviews in Mineralogy and Geochemistry 53, Mineralogical Society of America, Washington D.C., USA: 469–500.

- Fujii, M., Hayasaka, Y. and Horie, K. (2008) Metamorphism and timing of the nappe movement in the Asaji metamorphic area, eastern Kyushu. *Journal of the Geological Society of Japan*, **114**: 127–140 (in Japanese with English abstract).
- Fujimoto, M. and Hashimoto, M. (1960) Plutonic and metamorphic rocks of the Konohayama–Kunimiyama region, Kyushu (A Preliminary Report). *Journal of the Geological Society of Japan*, 66: 27–34 (in Japanese with English abstract).
- Iida, K., Iwamori, H., Orihashi Y., Park, T., Jwa, Y.-J., Kwon, S.-T., Danhara, T. and Iwano, H. (2015) Tectonic reconstruction of batholith formation based on the spatiotemporal distribution of Cretaceous–Paleogene granitic rocks in southwestern Japan. *Island Arc*, 24: 205–220.
- Ikeda, T. (2004) Pressure-temperature conditions of the Ryoke metamorphic rocks in Yanai district, SW Japan. *Contributions to Mineralogy and Petrology*, **146**: 577– 589.
- Ikeda, T., Miyazaki, K. and Matsuura, H. (2017) Metamorphic condition of a regional metamorphic complex in the Omuta district in northern Kyushu, southwest Japan. *Island Arc*, **26**, e12204.
- Ishizuka, Y., Mizuno, K., Matsuura, H. and Hoshizumi, H. (2005) Geology of the Bungo-Kitsuki District. Quadrangle Series 1:50000. Tsukuba, Japan: Geological Survey of Japan (in Japanese with English abstract).
- Ishizuka, Y., Ozaki, M., Hoshizumi, H., Matsuura, H., Miyazaki, K., Nawa, K., Sanematsu, K. and Komazawa, M. (2009) *Geological map of Japan 1:200000*, *Nakatsu*. Tsukuba, Japan: Geological Survey of Japan (in Japanese with English abstract).
- Iwano, H., Orihashi, Y., Hirata, T., Ogasawara, M., Danhara, T., Horie, K., Hasebe, N., Sueoka, S., Tamura, A., Hayasaka, Y., Katsube, A., Ito, H., Tani, K., Kimura, J., Chang, Q., Kouchi, Y., Haruta, Y. and Yamamoto, K. (2013) An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard. *Island Arc*, **22**: 382–394.

- Kamei, A., Owada, M., Nagao, T. and Shiraki, K. (2004) High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: evidence from clinopyroxene and whole rock compositions. *Lithos*, **75**: 359–371.
- Karakida, Y. (1992). Ryoke belt. In: Editorial Committee of Kyushu of Geology of Japan (Ed.), Regional Geology of Japan, Part 9, Kyushu, Kyoritsu Shuppan, Tokyo, Japan, pp. 92–97 (in Japanese)*.
- Karakida, K., Yamamoto, H., Miyachi, S., Oshima, T. and Inoue, T. (1969) Characteristics and Geological Situations of Metamorphic Rocks in Kyushu. *Memoirs of the Geological Society of Japan*, 4: 3–21 (in Japanese with English abstract).
- Kasama, T. (1953) Geology of the Hayami volcanic area: with special reference to the history of the volcanic activities. *Journal of the Geological Society of Japan*, **59**: 161– 172 (in Japanese with English abstract).
- Matsumoto, H. and Narishige, K. (1985) Volcanic geology of Kunisaki Peninsula, Oita Prefecture. *Memoirs of the Faculty of General Education, Kumamoto University, Natural Sciences*, 20: 61–76 (in Japanese with English abstract).
- Miyazaki, K., Ikeda, T., Matsuura, H., Danhara, T., Iwano, H. and Hirata, T. (2019) Ascent of migmatites of a high-temperature metamorphic complex due to buoyancy beneath a volcanic arc: a mid-Cretaceous example from the eastern margin of Eurasia. *International Geology Review*, **61**: 649–674.
- Miyazaki, K., Ikeda, T., Matsuura, H., Danhara, T., Iwano, H. and Hirata, T. (2017) A high-*T* metamorphic complex derived from the high-*P* Suo metamorphic complex in the Omuta district, northern Kyushu, southwest Japan. *Island Arc*, **26**: e12208.
- Murakami, N. (1994) Sporadically distributed granitoids and related gneissose metamorphic rocks in the southeastern area of Fukuoka Prefecture and Kunisaki Peninsula, Southwest Japan. *Journal of Mineralogy, Petrology and Economic Geology*, **89**: 335–347 (in Japanese with English abstract).
- Nakajima, T., Nagakawa, K., Obata, M. and Uchiumi, S. (1995) Rb-Sr and K–Ar ages of the Higo metamorphic rocks and related granitic rocks, Southwest Japan. *Journal of the Geological Society of Japan*, **101**: 615–620 (in Japanese with English abstract).
- Osanai, Y., Masao, S. and Kagami, H. (1993) Rb–Sr whole rock isochron ages of granitic rocks from the central Kyushu, Japan. *Memoirs of the Geological Society of Japan*, 42: 135–150 (in Japanese with English abstract).
- Owada, M., Kamei, A., Yamamoto, K., Osanai, Y. and Kagami, H. (1999) Spatial-temporal variations and origin of granitic rocks from central to northern part of Kyushu.

Memoirs of the Geological Society of Japan, **53**: 349–363 (in Japanese with English abstract).

- Sasada, M. (1987) Pre-Tertiary basement rocks of Hohi area,central Kyushu, Japan. *Bulletin of Geological Survey* of Japan, 38: 385–422 (in Japanese with English abstract).
- Shimooka, K., Saito, S. and Tani, K. (2019) Zircon U–Pb ages of the Ryoke granitoids from the Takanawa Peninsula, northwest Shikoku, southwest Japan. *Journal of Mineralogical and Petrological Sciences*, **114**: 284–289.
- Skrzypek, E., Kawakami, T., Hirajima, T., Sakata, S. Hirata, T. and Ikeda, T. (2016) Revisiting the high temperature metamorphic field gradient of the Ryoke Belt (SW Japan): New constraints from the Iwakuni-Yanai area. *Lithos*, 260: 9–27.
- Stacey, J. S. and Kramers, J. D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters*, 26: 207–221.
- Tsutsumi, Y. (2021) Zircon U–Pb ages of the granitic rocks in the Chikuhi area, central Kyushu, southwest Japan. *Bulletin of the National Museum and Nature Science*, *Series C*, **47**: 13–23.
- Tsutsumi, Y. (2022) Zircon U–Pb ages of the Higo Plutonic Complex: Implication for migration of Cretaceous igneous activity in Kyushu, southwest Japan. *Island Arc*, 31: e12446.
- Tsutsumi, Y. and Tani, K. (2022) Zircon U–Pb dating of Cretaceous Nishisonogi granites, western Nagasaki Prefecture, Kyushu, southwest Japan. Bulletin of the National Museum and Nature Science, Series C, 48: 1–14.
- Tsutsumi, Y., Horie, K., Sano, T., Miyawaki, R., Momma, K., Matsubara, S., Shigeoka, M. and Yokoyama, K. (2012) LA-ICP-MS and SHRIMP ages of zircons in chevkinite and monazite tuffs from the Boso Peninsula, Central Japan. *Bulletin of the National Museum of Nature and Science, Series C*, 38: 15–32.
- Tunheng, A and Hirata, T. (2004) Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. *Journal of Analyti*cal Atomic Spectrometry, 7: 932–934.
- Vermeesch, P. (2018). IsoplotR: a free and open toolbox for geochronology. *Geoscience Frontiers*, 9: 1479–1493.
- Williams, I. S. (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben, M. A., Shanks, W. C. P. and Ridley, W. I. (Ed.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology 7, Society of Economic Geologists, Littleton, CO. USA, pp. 1–35.

* English translation from the original written in Japanese.