Detrital zircon U–Pb ages of accretionary complexes in Amami-Oshima Island, central Ryukyu Arc, Japan

Yukiyasu Tsutsumi* and Kenichiro Tani

Department of Geology and Paleontology, National Museum of Nature and Science 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan *Author for correspondence: ytsutsu@kahaku.go.jp

Abstract Although the zonal structure of basement accretionary complexes (ACs) in the Southwest Japan Arc has been thought to extend to the Ryukyu Arc, it is difficult to trace the continuity. We investigated detrital zircon U–Pb ages of sandstones from ACs in Amami-Oshima Island to establish their accretionary age and the continuity of the zonal structure in the central Ryukyu Arc. Basement ACs on Amami-Oshima Island were subdivided into the Yuwan, Naon and Amami Complexes. The Amami Complex shows detrital zircon age spectra similar to those of the older part in the northern Shimanto Belt. In contrast, the Naon Complex shows a spectrum like that of the Chichibu Belt. However, more than one zircon grain of about 110–100 Ma found in the Amami and Naon Complexes present that these complexes corresponding to the northern Shimanto Belt. The Naon Complex would not correspond to the Chichibu Belt as previously thought, but to the northern Shimanto Belt, and the Butsuzo Tectonic Line would be between the Yuwan and Naon Complexes.

Key words: detrital zircon, Butsuzo Tectonic Line, Chichibu Belt, Shimanto Belt, Amami-Oshima Island

Introduction

The basement of the Southwest (SW) Japan Arc shows a zonal structure of middle Carboniferous to Middle Miocene accretionary complexes (ACs) and metamorphosed ACs (meta-ACs) because of continuous accretion, subdivided into Inner and Outer Zones across the Median Tectonic Line (MTL). The Outer Zone is subdivided into the Jurassic Chichibu Belt, Cretaceous northern Shimanto Belt and Paleogene to Neogene southern Shimanto Belt from north to south, the boundaries being the Butsuzo Tectonic Line (BTL) and Aki Tectonic Line (ATL) (e.g., Isozaki et al., 2010), except for the Cretaceous meta-AC of the Sanbagawa belt which crops out as a window along the southern side of the MTL (e.g., Knittel et al., 2024) and the Kurosegawa Belt, which is thought to be the klippe of Inner Zone components and lies over the Chichibu Belt (e.g., Isozaki and Itaya, 1991) (Fig. 1).

The zonal structure of SW Japan has been thought to extend to the Ryukyu Arc (e.g., Konishi, 1963, 1965; Isozaki and Nishimura, 1989; Takami *et al.*, 1999). Only the southern Shimanto Belt outcrops in the northern Ryukyu Arc (e.g., Kuwazuru and Nagatsu, 2007; Saito et al., 2007), while the Chichibu Belt and the northern and southern Shimanto Belts outcrop in the central Ryukyu Arc (Nakae et al., 2010; Saito et al., 2009; Takeuchi, 1994). In contrast, the Jurassic AC and Triassic meta-AC which outcrop in the southern Ryukyu Arc would originate from the Inner Zone of SW Japan (Isozaki and Nishimura, 1989). However, the ATL and BTL in the central Ryukyu Arc would be segmented into parts, and it is difficult to trace the continuity. Even in Amami-Oshima Island, in the northern part of the central Ryukyu Islands, the location of the BTL has varied in the literature (Fig. 2). Therefore, fixing the BTL in Amami-Oshima Island is the threshold to verifying a southern extension of the zonation.

To clarify the difference and/or affinity of the ACs between the central Ryukyu Arc and the SW Japan Arc, we investigated detrital zircon U–Pb ages of sandstones from ACs in Amami-Oshima Island. The detrital zircon ages taken from a sandstone sample could be used to infer its provenances (e.g., Hara *et al.*, 2017; Nakama *et al.*, 2010) and older limit of deposition ages (e.g., Dickinson and Gehrels, 2009). Because sandstone is a late sediment in an AC (Isozaki *et al.*, 1990), the older

^{© 2024} National Museum of Nature and Science

Fig. 1. Tectonic division map of SW Japan Arc and Ryukyu Arc.

limit of the deposition age of a sandstone sample indicates the older limit of the accretion age of the AC. Furthermore, the age data of this study will contribute to the validating of tectonic setting and transition of provenance of clastics around the central Ryukyu Arc.

Geological setting

The basement of Amami-Oshima Island consists of ACs which have been subdivided into geological units, but the names of those units and their boundaries vary slightly in the literature (e.g., Fujita, 1989; Kashima and Takahashi, 1977; Konishi, 1963; Osozawa *et al.*, 1983; Sakai *et al.*, 1977). In this study the names and boundaries of the geologic units follow Takeuchi (1994), being divided into the Yuwan, Naon and Amami Complexes (Fig. 3).

The Yuwan Complex consists mainly of basalt (greenstone), limestone, chert and mixed rock containing rocks listed above in a mudstone matrix. Sandstone is unevenly distributed and could not be collected in this study. Carboniferous-Permian fusulinidae were found from limestone in basaltic tuff breccia (Osozawa et al., 1983) and Triassic conodonts were found from massive limestone (Igo, 1972). Although Permian-Triassic radiolarian assemblages are common in cherts, Late Jurassic radiolarian assemblages were reported from sericeous/tuffaceous shales and several cherts (Osozawa, 1986). Considering the above, for the Yuwan Complex it is supposed that the Late Jurassic AC contains Carboniferous-Permian basaltic rocks, Triassic massive limestones, Permian to Early Jurassic cherts, and Late Jurassic cherts and siliceous shales. These age signatures indicate that the Yuwan Complex would correspond to the Chichibu Belt.

The Naon Complex shows a blocks-in-matrix structure; blocks consist of basalt (greenstone), limestone, chert, siliceous shale and mudstone, and a matrix consisting of mudstone and sandstone. Huge blocks called "slabs" are often observed, with thicknesses of over 50 m (Takeuchi, 1993). Permian fusulinidae and coral and Triassic conodonts were found from limestones (Osozawa, 1986). Although Permian–Jurassic radiolarian assemblages were commonly observed in cherts (e.g., Osozawa, 1986;

Fig. 3. Geological map of Amami-Oshima and surrounding islands with sample localities, modified after Takeuchi (1994).

Fujita, 1989), Early Cretaceous radiolarian assemblages were observed in several cherts and siliceous shales (Fujita, 1989). The ages of each rock type in the Yuwan and Naon Complexes are similar, except for the youngest age signature in the Naon Complex. Considering the above, the Naon complex is supposed to be an Early Cretaceous AC, and would correspond to the Sanbosan Unit, the southernmost part of the Chichibu Belt (e.g., Takeuchi, 1992; 1993). However, for the Naon Complex there is no report of microfossil ages from matrix mudstone and sandstone. It is possible that the accretion age of the Naon Complex is younger than the youngest microfossil ages.

The Amami Complex is subdivided into the Shinkogachi, Yakugachi and Naze Units from north to south; i.e., from tectonically upper to lower. The Shinkogachi Unit consists mainly of sandstone, mudstone and siliceous mudstone, and sometimes features slabs consisting of chert and greenstone which originated in the Chichibu Belt (Takeuchi, 1993). Although some previous studies thought this Unit to correspond to the Chichibu Belt, based on age signatures from the slabs (Fujita, 1986; Konishi, 1963; Sakai et al., 1977; Fig. 2A, B, E), the youngest radiolarian fossil assemblage indicates Early to Late Albian (Fujita, 1986), which would be older limit of the accretion age of the Unit (Takeuchi, 1993). The Yakugachi and Naze Units consist of sandstone, mudstone, acidic tuff and greenstone, with no slabs originating from the Chichibu Belt (Takeuchi, 1993). The youngest radiolarian fossil assemblage of siliceous sandstone from the Yakugachi Unit indicates Albian to Turonian (Osozawa et al., 1983; Takeuchi, 1993), which would be the accretion age. The only index fossil from the Naze Unit is late Cenomanian to early Turonian ammonite from sandstone-mudstone alternation (Ishikawa and Yamaguchi, 1965), which would be the accretion age. In addition to the fossil age evidences younger than Albian, Takeuchi (1992) detrital indicate that provenances of clastics are different between the Koniya and Naze Complexes (Amami Complex in this study) and Yuwan Complex (Yuwan and Naon Complexes in this study) using garnet compositions and sandstone components. Therefore, all Units of the Amami Complex would correspond to the Shimanto Belt.

There are five granitic provinces in SW Japan (e.g., Nakajima, 2018): the Hida (Permian to Jurassic), San-in (latest Cretaceous to Paleogene), San-yo (Cretaceous), Ryoke (Cretaceous) and Gaitai (Middle Miocene) Provinces from north to south; i.e., from continentalward to trenchward. The Shimanto Belt in the SW Japan Arc is involved in the Gaitai Province, where the ages of the granitoids are Middle Miocene (15.6–13.5 Ma; Shinjoe *et al.*, 2019). In contrast, the ages of the granitoids in the Amami Complex are Paleocene (65.9–61.7 Ma; Ogasawara and Fukuyama, 2017), which ages correspond to the San-in Province in the SW Japan Arc, situated about 200 km continentalward from the Gaitai Province.

Analytical methods

All sample preparation and analyses were conducted at National Museum of Nature and Science, Tsukuba, Japan. The rock samples were scrubbed and washed in an ultrasonic bath for ten minutes to avoid surface zircon contaminants as much as possible. Fragmentation of the rock samples was conducted by a high voltage pulse power selective fragmentation equipment, SELFRAG Lab (Selfrag AG). The zircon grains were handpicked from heavy fractions that were separated from heavy-liquid techniques. Zircon grains from the samples, the zircon standards FC1 (1099Ma; Paces and Miller, 1993) and OD-3 (33 Ma; Iwano et al., 2013), and the glass standard NIST SRM610 were mounted in an epoxy resin and polished till the surface was level with the center of the embedded grains. After mounting and polishing, backscattered electron and cathodoluminescence (CL) images of zircon grains were taken. A scanning electron microscopecathodoluminescence equipment, JSM-6610 (JEOL) and a CL detector (SANYU electron), was used for CL images. The images were used to select suitable sites for analysis. U-Pb dating of these samples was carried out using a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS) that was composed of NWR213 (Elemental Scientific Lasers) and Agilent 7700x (Agilent Technologies). The experimental conditions and the analytical procedures for the measurements were after Tsutsumi et al. (2012), and additional devices of buffered type

stabilizer (Tunheng and Hirata, 2004) and TwoVol2 sample cell were applied. The spot size of the laser was 25 µm. A correction for common Pb was made on the basis of the measured $^{208}\mbox{Pb}/^{206}\mbox{Pb}$ and \mbox{Th}/\mbox{U} ratios (²⁰⁸Pb correction; e.g. Williams, 1998) and the model for common Pb compositions proposed by Stacey and Kramers (1975). ²³⁸U/²⁰⁶Pb* and ²⁰⁷Pb*/²⁰⁶Pb* ratios which corrected by ²⁰⁸Pb correction are used for the concordia plot. Pb* indicates radiometric Pb. The criteria of concordant is for 2σ overlap of the concordia curve on a concordia diagram when ²³⁸U-²⁰⁶Pb* age is less than 1000 Ma, and discordancy (Song et al., 1996) of less than 15% when ²³⁸U-²⁰⁶Pb* age more than and equal to 1000 Ma. ²³⁸U-²⁰⁶Pb* ages are used for less than 1000Ma data and ²⁰⁷Pb*/²⁰⁶Pb* ages are used for the other data. The data of secondary standard OD-3 zircon obtained during analysis yielded weighted mean ages of 33.1 ± 1.4 Ma (n = 9; when MSWD = 1.87; NAZ was analyzed), 33.6 ± 1.6 Ma (n = 9; MSWD = 2.04; when YKG was analyzed), $31.0 \pm 1.0 \,\text{Ma}$ (n = 10; MSWD = 0.96; when SKG was analyzed) and 31.4 ± 0.8 Ma (n = 9; MSWD = 0.47; when NAN was analyzed). MSWD is an acronym of mean square weighted deviation, calculated from the square root of the χ^2 value.

Sample descriptions and results of zircon age analysis

Table A1 lists zircon data in terms of the fraction of common ²⁰⁶Pb, U and Th concentrations, Th/U, ²³⁸U/²⁰⁶Pb* and ²⁰⁷Pb*/²⁰⁶Pb* ratios, and radiometric $^{238}\text{U}-^{206}\text{Pb}^*$ ages of the samples. All errors are of 1σ level. All zircons in the samples show rhythmic oscillatory and/or sector zoning on CL images (Fig. 4), which is commonly observed in igneous zircons (e.g., Corfu et al., 2003). Concordia diagrams for each sample are shown in Fig. 5. The youngest single grain age (YSG) and the weighted mean of the youngest cluster of more than two grain ages that overlap in age within a 1σ error (YC1 σ) (Dickinson and Gehrels, 2009) are commonly used to show the older limit of deposition age. All rock samples are stored at the National Museum of Nature and Science. The registration number of each sample is the catalogue number of the rock specimen in the collection database of the National

Fig. 4. Cathodoluminescence (CL) images of analyzing sections of typical zircon grains from the samples. Circles indicate analyzed spots by LA-ICP-MS. Spot diameter is 25 μm approx.

Museum of Nature and Science (http://db.kahaku. go.jp/webmuseum_en/). The sample localities, registration numbers, YSG and YC1 σ are summarized in Table 1. The geologic time scale in this study follows Gradstein and Ogg (2020).

NZ: Naze Unit, Amami Complex

The sample is a coarse-grained sandstone collected from the southernmost part of Sokaru, Setouchi Town, Amami-Oshima Island (lat. N28°07'33.9", long. E129°21'37.2"). The registration number is 137279. A total of 146 spots/grains were analyzed and 135 data were found to be con-

Fig. 5. Tera-Wasserberg U-Pb concordia diagrams of zircons from the samples.

Table 1. Summary of localities, registration numbers and indicators of older limit of deposition age of each sample.

Comm10	Commis attribution	Locality	Pag No -	n of data		YSG	YC1σ		
Sample	Sample auribution	Locality	Reg. No.	All	Conc.	Age (Ma)	Age (Ma)	n	MSWD
NZ	Naze Complex	N 28°07'33.9", E129°21'37.2"	137279	146	135	93.3 ± 2.7	102.7 ± 2.3	2	1.60
YK	Yakugachi Complex	N 28°09'09.0", E129°17'45.8"	137280	145	133	95.8 ± 1.9	112.7 ± 1.8	2	0.26
SK	Shinkogachi Complex	N 28°16′57.8″, E129°16′24.1″	137281	143	134	99.7 ± 4.2	102.4 ± 1.4	6	0.22
NN	Naon Complex	N 28°15′46.0″, E129°11′27.1″	137283	148	138	97.5 ± 3.2	108.8 ± 3.0	2	0.41

Errors are 1σ

Conc.: concordant

cordant (Fig. 5A). The concordant age data form clusters at about 93–126 Ma (11 data), 155 Ma (1 datum), 161–262 Ma (4 data), 302 Ma (1 datum), 406 Ma (1 datum), 452 Ma (1 datum) and 33 data of Precambrian grains (Fig. 6A). There are prominent peaks at about 180 Ma and 220 Ma. The YSG and YC1 σ of this sample are 93.3 ± 2.7 Ma (Cenomanian to Turonian) and 102.7 ± 2.3 Ma (Albian), respectively.

YK: Yakugachi Unit, Amami Complex

The sample is a coarse-grained sandstone collected from the southern part of Tean, Setouchi

Town, Amami-Oshima Island (lat. N28°09'09.0", long. E129°17'45.8"). The registration number is 137280. A total of 145 spots/grains were analyzed and 133 data were found to be concordant (Fig. 5B). The concordant age data form clusters at about 95–126 Ma (4 data), 158–277 Ma (94 data), 297 Ma (1 datum), 345 Ma (1 datum), 355 Ma (1 datum), 430 Ma (1 datum), 468 Ma (1 datum), 521 Ma (1 datum) and 29 data of Precambrian grains (Fig. 6B). The YSG and YC1 σ of this sample are 95.8±1.9 Ma (Cenomanian) and 112.7±1.8 Ma (Aptian to Albian), respectively.

Fig. 6. Probability distribution diagrams and histograms of concordant ages from the samples.

SK: Shinkogachi Unit, Amami Complex

The sample is a medium-grained sandstone collected from the southeastern part of Ashiken, Setouchi Town, Amami-Oshima Island (lat. N28°16'57.8", long. E129°16'24.1"). The registration number is 137281. A total of 143 spots/grains were analyzed and 134 data were found to be concordant (Fig. 5C). The concordant age data form clusters at about 100–116 Ma (10 data), 141 Ma (1 datum), 155 Ma (1 datum), 173–281 Ma (86 data), ~340 Ma (2 data) and 34 data of Precambrian grains (Fig. 6C). The YSG and YC1 σ of this sample are 99.7 ± 4.2 Ma (Albian to Cenomanian) and 102.4 ± 1.4 Ma (Albian), respectively.

NN: Naon Complex

The sample is a coarse-grained sandstone collected from the eastern part of Yadon, Setouchi Town, Amami-Oshima Island (lat. N28°15′46.0″, long. E129°11′27.1″). The registration number is 137283. A total of 148 spots/grains were analyzed and 138 data were found to be concordant (Fig. 5D). The concordant age data form clusters at about 98–123 Ma (4 data), 163–292 Ma (97 data), 367– 416 Ma (8 data) and 29 data of Precambrian grains (Fig. 6D). The YSG and YC1 σ of this sample are 97.5±3.2 Ma (Albian to Cenomanian) and 108.8±3.0 Ma (Albian), respectively.

Discussion

Accretion age for each accretionary unit

Although YSG should indicate the older limit of the depositional age in principle, $YC1\sigma$ is commonly better than YSG in doing so because estimates based on ages from multiple grains are more consistent (Dickinson and Gehrels, 2009). The $YC1\sigma$ of this study is detached from YSG for each sample because of the low amount of age data in the youngest age cluster, except for the SK sample. It would indicate the presence of a 'real youngest cluster' around YSG which could not be found because of shortage of data, despite a sufficient quantity to meet the requisite condition (Vermeesch, 2004). Therefore, the accretion age of the accretionary units in this study should be comprehensively considered using YSG, YC1 σ and index/radiolarian fossils. All errors in this study are 1σ .

Naze Unit: The YSG and YC1 σ of this NZ sample are 93.3 ± 2.7 Ma (Cenomanian to Turonian) and 102.7 ± 2.3 Ma (Albian), respectively. The only index fossil age from the latest sediments of the unit is late Cenomanian to early Turonian (Ishikawa and Yamaguchi, 1965). The younger zircon age data of the NZ sample are of insufficient quantity to form a youngest age cluster, and it is not effective to restrict the older limit of deposition age. Therefore, 'late Cenomanian to early Turonian,' which is restricted using the index fossil and consistent to the YSG, would be acceptable for the accretion age.

Yakugachi Unit: The YSG and YC1 σ of the YK sample indicate 95.8±1.9Ma (Cenomanian) and 112.7±1.8Ma (Aptian to Albian), respectively, while the youngest radiolarian fossil assemblage from a sandstone indicates Albian to Turonian (Osozawa *et al.*, 1983; Takeuchi, 1993). Because the YC1 σ is clearly isolated from the YSG and is clearly older than the fossil age, it is not effective to restrict the older limit of the accretion age for the YK sample. Therefore, 'late Cenomanian to Turonian,' which is restricted using the radiolarian fossil assemblage, YSG, and estimated accretion age of the Naze Unit, would be acceptable for the accretion age.

Shinkogachi Unit: The youngest radiolarian fossil assemblage indicates Early to Late Albian (Fujita, 1986), while the YSG and YC1 σ of zircon U–Pb ages from the SK sample indicate $99.7 \pm 4.2 \, \text{Ma}$ (Albian to Cenomanian) and 102.4 ± 1.4 Ma (Albian), respectively. It is possible that the accretion age is Cenomanian and after. Considering YSG data, 'on and after latest Albian' would nonetheless be better, strictly speaking.

Naon Complex: The youngest fossil remarks are Early Cretaceous radiolarian assemblages (Fujita, 1989). Additionally, the YSG and YC1 σ of zircon U-Pb ages from the NN sample indicate $97.5 \pm 3.2 \,\mathrm{Ma}$ (Albian to Cenomanian) and 108.8 ± 3.0 Ma, respectively. These age data restrict the accretion age of the Naon Complex to at least on or after Early Albian. Although it is possible that the accretion age is Cenomanian and after, considering the YSG, 'on and after Albian' would strictly be better. Additionally, the age signatures demonstrate that the Naon Complex would correspond to the northern part of the Northern Shimanto Belt rather than the Sanbosan Unit, southernmost in the Chichibu Belt, where the youngest radiolarian assemblage indicates late Valanginian to early Hauterivian (about 133 Ma) (Matsuoka et al., 1998). Therefore, the BTL would be between the Yuwan and Naon Complexes.

Interpretation of the zircon age spectra

The zircon age spectra of the NZ, YK and SK samples have prominent peaks at the Late Triassic and Jurassic and small peaks at the Permo-Triassic and Cretaceous (Fig. 7A, B, C). These spectra are similar to those of the northern part of the Northern Shimanto Belt, the Tochidani, Hinotani and Osodani Units in Shikoku (Hara *et al.*, 2017). Comparatively, the age spectrum of the NN sample has prominent peaks at the Permo-Triassic and Jurassic, and a small peak at the Devonian (Fig. 7D). Although this spectrum is similar to those of the Chichibu Belt (Tokiwa *et al.*, 2019), more than one Cretaceous zircon grain and the shoulder of the peak at the Late Triassic would reflect incorporation of northern Shimanto components. The Naon Com-

Fig. 7. Probability distribution diagrams and histograms of concordant ages from the samples in the Phanerozoic range.

plex shows a block-in-matrix texture and the NN sample is a sandstone from the matrix. The origin of clastics in the matrix sandstones of the Naon Complex would be tectonic eroded and weathered Chichibu Belt and Cretaceous trench-fill sediments.

The youngest age clusters of zircons in the samples from Amami-Oshima Island are far lower in quantity than those from Shikoku. This fact indicates less igneous activity around the central Ryukyu Arc, compared to the SW Japan Arc, during the middle Cretaceous. Additionally, the zircon age spectra of the samples have no age signature of the South China Craton (SCC), which was prominent around 600 Ma to 1000 Ma (e.g., Xu *et al.*, 2007, Zhou *et al.*, 2002) in spite of neighboring the SCC. This information will be a clue in solving the tectonics around the East China Sea.

Conclusions

The zonal structure of basement ACs in the SW Japan Arc continue to the Ryukyu Arc (Fig. 1), but

the location of the BTL is still not certain even on Amami-Oshima Island, in the northern part of the central Ryukyu Islands (Fig. 2). The basement of Amami-Oshima Island consists of Acs which were divided to the Yuwan, Naon and Amami Complexes. The Amami Complex was subdivided into the Shinkogachi, Yakugachi and Naze Units from north to south; i.e., from tectonically upper to lower (Fig. 3). Detrital zircon U–Pb dating is applied to sandstones from these ACs to clarify the continuity between the central Ryukyu and SW Japan Arcs.

Most detrital zircon grains from the samples are igneous in origin (Fig. 4) and indicate concordant age (Fig. 5). The indexes of the older limit of accretion age (YSG and/or YC1 σ) for the samples indicate 113–93 Ma (Albian to Turonian) (Table 1), being much younger than the age of the Sanbosan Unit, southernmost in the Chichibu Belt, which is late Valanginian to early Hauterivian (about 133 Ma) in age. The accretionary ages, estimated comprehensively using detrital zircon age data and index/radiolarian fossils data of the Naon Complex and Shinkogachi, Yakugachi and Naze Units, are estimated as: Albian and after, late Albian and after, late Cenomanian to Turonian and late Cenomanian to early Turonian, respectively.

The age spectra of detrital zircons for the samples show roughly bimodal results; Phanerozoic and older than Mesoproterozoic, without Neoproterozoic (Fig. 6). The Phanerozoic range of the spectra of the Units in the Amami Complex (Fig. 7A, B, C) is similar to the older (northern) part of the northern Shimanto Belt while that of the Naon Complex (Fig. 7D) is similar to the Chichibu Belt. Clastics in the sandstone of the Naon Complex would originate from tectonically eroded and weathered Chichibu Belt and Cretaceous trench-fill sediments, and the accretion age corresponds to the northern Shimanto Belt. Therefore, the BTL would be between the Yuwan and Naon Complexes.

Acknowledgment

The authors thank Mrs. Y. Kusaba of the National Museum of Nature and Science for her help in SEM analysis. This work is conducted as a part of the project "Interpretation of distribution (condensation and diffusion) of rare metals in igneous rocks" of National Museum of Nature and Science.

References

- Corfu, F., Hanchar, J. M., Hoskin, P. W. O. and Kinny, P. (2003) An atlas of zircon textures. In: Hanchar, J. M. and Hoskin, P. W. O. (Ed.), *Zircon: Reviews in Mineralogy* and Geochemistry 53, Mineralogical Society of America, Washington D.C., USA: 469–500.
- Dickinson, W. R. and Gehrels, G. E. (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. *Earth and Planetary Science Letters*, **288**: 115–125.
- Fujita, H. (1989) Stratigraphy and geologic structure of the pre-Neogene strata in central Ryukyu Islands. *Journal of Science of Hiroshima University Ser. C*, 9: 237–284.
- Gradstein F. M. and Ogg, J. G. (2020) Chapter 2: The chronostratigraphic scale. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D. and Ogg, G. M., (Ed.), *Geologic Time Scale 2020, Vol. 1*, Elsevier, 159–192.
- Hara, H., Nakamura, Y., Hara, K., Kurihara, T. Mori, H., Iwano, H., Danhara, T. Sakata, S. and Hirata, T. (2017) Detrital zircon multi-chronology, provenance, and lowgrade metamorphism of the Cretaceous Shimanto accretionary complex, eastern Shikoku, Southwest Japan: Tectonic evolution in response to igneous activity within a subduction zone. *Island Arc*, 26: e12218.
- Igo, H. (1972) Conodonts, as a new Index Fossil in Japan. Journal of Geography (Chigaku Zasshi), **81**: 142–151 (in Japanese with English abstract).
- Ishikawa, H. and Yamaguchi, S. (1965) On the discovery of Ammonite from Honto Isl., of Amami-Oshima, Ryukyu and its geological meaning. *Journal of the Geological Society of Japan*, **71**: 78–79 (in Japanese).
- Isozaki, Y., Aoki, K., Nakama, T. and Yanai, S. (2010) New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. *Gondwana Research*, 18: 82–105.
- Isozaki, Y. and Itaya, T. (1991) Pre-Jurassic klippe in northern Chichibu belt in west-central Shikoku, Southwest Japan. *Journal of the Geological Society of Japan*, 97: 431–450 (in Japanese with English abstract).
- Isozaki, Y. and Nishimura, Y. (1989) Fusaki Formation, Jurassic subduction–accretion complex on Ishigaki Island, southern Ryukyus and its geologic implication to Late Mesozoic convergent margin of East Asia. *Memoir of the Geological Society of Japan*, 33: 259–275 (in Japanese with English abstract).
- Iwano, H., Orihashi, Y., Hirata, T., Ogasawara, M., Danhara, T., Horie, K., Hasebe, N., Sueoka, S., Tamura, A., Hayasaka, Y., Katsube, A., Ito, H., Tani, K., Kimura, J., Chang, Q., Kouchi, Y., Haruta, Y. and Yamamoto, K. (2013) An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard. *Island Arc*, **22**: 382–394.
- Kashima, N. (1983) Studies on the Butsuzo tectonic line of Ryukyu Arc. *Memoirs of Geological Society of Japan*, 22: 57–65 (in Japanese with English abstract).
- Kashima, N. and Takahashi, J. (1977) Stratigraphical

sequence of Kakeroma-Island, Amami-archipelago with special concern to its syntectogenic sedimentation. In: Kizaki K. (Ed.), *Geological Studies of the Ryukyu Islands* (*Report of Grani-in-Aid for Scientific Research No.* 234050), **2**: 25–33 (in Japanese with English abstract).

- Knittel, U., Tokiwa, T, Tsutsumi, Y., Endo, S. and Wallis, S.
 R. (2024) Geochronology of the Sanbagawa Belt: Younger and faster than before. *Elements*, 20, 89–95.
- Konishi, K. (1963) Pre-Miocene basement complex of Okinawa, and the tectonic belts of the Ryukyu Islands. Science Report of Kanazawa University, 8: 569–602.
- Konishi, K. (1965) Geotectonic framework of the Ryukyu Islands. *Journal of the Geological Society of Japan*, 71: 437–457 (in Japanese with English abstract).
- Kuwazuru, J. and Nagatsu, M. (2007) Paleogene radiolarians from the Kumage Group in northern Tanegashima Island, Kagoshima Prefecture, Japan. *Bulletin of the Kagoshima Prefectural Museum*, 26: 1–11 (in Japanese).
- Matsuoka, A., Yamakita, S., Sakakibara, M. and Kisada, K. (1998) Unit division for the Chichibu Composite Belt from a view point of accretionary tectonics and geology of western Shikoku, Japan. *Journal of the Geological Society of Japan*, **104**: 634–653 (in Japanese with English abstract).
- Nakae, S., Kaneko, N., Miyazaki, K., Ohno, T. and Komazawa, M. (2010) *Geological Map of Japan* 1:200000, Yoron Jima and Naha. Tsukuba, Japan: Geological Survey of Japan (in Japanese with English abstract).
- Nakama, T., Hirata, T., Otoh, S., Aoki, K., Yanai, S., & Maruyama, S. (2010) Paleogeography of the Japanese Islands: Age spectra of detrital zircon and provenance history of the orogen. *Journal of Geography (Chigaku Zasshi)*, **119**: 1161–1172 (in Japanese with English abstract).
- Ogasawara, M. and Fukuyama, M. (2017) Zircon U–Pb ages and Sr–Nd isotopes of granitoids in the Ryukyu Islands, Japan. *Abstracts of 124th Annual Meeting of the Geological Society of Japan*, **124**: R5-O-22 (in Japanese).
- Osozawa, S., Aita, Y., Nakamori, T., Hashimoto, S., Minoura, K., Horiguchi, T. and Nakagawa, H. (1979) Geology of Amami Oshima, Amami Gunto—A preliminary report. In: Kizaki, K. (Ed.), Geological Studies of the Ryukyu Islands (Report of Grani-in-Aid for Scientific Research No. 234050), 4: 95–106 (in Japanese with English abstract).
- Osozawa, S., Aita, Y., Nakamori, T., Niibe, A., Kanisawa, S. and Nakagawa, H. (1983) Geology of Amami Oshima, central part of the Ryukyu Islands, with special reference to effect of gravity transportation on geologic construction. *Memoirs of Geological Society of Japan*, 22: 39–56 (in Japanese with English abstract).
- Osozawa, S. (1986) Origin of chert, limestone and basalt complex in Japan. *Journal of the Geological Society of Japan*, 92: 709–722 (in Japanese with English abstract).
- Paces, J. B. and Miller, J. D. (1993) Precise U–Pb age of Duluth Complex and related mafic intrusions, northern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. *Journal of Geophysical Research*, 98: 13997–14013.

Saito, M., Kawakami, S. and Ogasawara, M. (2007) Estab-

lishment of stratigraphic framework of the Shimanto accretionary complex in Yakushima Island, Japan, based on newly found Eocene radiolarian fossils. *Journal of the Geological Society of Japan*, **113**: 266–269 (in Japanese with English abstract).

- Saito, M., Ozaki, M., Nakano, S., Kobayashi, T. and Komazawa, M. (2009) *Geological Map of Japan 1:200000*, *Tokunoshima*. Tsukuba, Japan: Geological Survey of Japan (in Japanese with English abstract).
- Sakai, T., Ono, K., Momoki, Y., Otsuka, H. and Hayasaka, S. (1977) Geology of northern part of the Amami-Oshima. In: Kizaki, K. (Ed.), *Geological Studies of the Ryukyu Islands (Report of Grani-in-Aid for Scientific Research No. 234050)*, **2**: 11–23 (in Japanese with English abstract).
- Shinjoe, H., Orihashi, Y. and Anma, R. (2021) U–Pb ages of Miocene near-trench granitic rocks of the Southwest Japan arc: Implications for magmatism related to hot subduction. *Geological Magazine*, **158**: 47–71.
- Song, B., Nutman, A. P. Liu, D. and Wu, J. (1996) 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. *Precambrian Research*, 78, 79–94.
- Stacey, J. S. and Kramers, J. D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth and Planetary Science Letters*, 26: 207–221.
- Takami, M., Takemura, R., Nishimura, Y. and Kojima, T. (1999) Reconstruction of oceanic plate stratigraphies and unit division of Jurassic-Early Cretaceous accretionary complexes in the Okinawa Islands, central Ryukyu Island Arc. Journal of the Geological Society of Japan, 105: 866–880 (in Japanese with English abstract).
- Takeuchi, M. (1992) Origin of detrital garnet from the Mesozoic sandstones of Amami-Oshima, Nansei Islands. *Memoirs of Geological Society of Japan*, 38: 237–248 (in Japanese with English abstract).
- Takeuchi, M. (1993). Geology of the Yuwan district. Quadrangle Series 1:50000. Tsukuba, Japan: Geological Survey of Japan (in Japanese with English abstract).
- Takeuchi, M. (1994) Geological Map of Japan 1:200000, Amami-Oshima. Tsukuba, Japan: Geological Survey of Japan (in Japanese with English legend).
- Tokiwa, T., Shimura, Y., Takeuchi, M., Shimosato, S., Yamamoto, K. and Mori, H. (2019) Provenance of trenchfill deposits of the Jurassic Chichibu accretionary complex, Southwest Japan. *Journal of Asian Earth Sciences*, 184: 103970.
- Tsutsumi, Y., Horie, K., Sano, T., Miyawaki, R., Momma, K., Matsubara, S., Shigeoka, M. and Yokoyama, K. (2012) LA-ICP-MS and SHRIMP ages of zircons in chevkinite and monazite tuffs from the Boso Peninsula, Central Japan. *Bulletin of the National Museum of Nature* and Science, Series C, 38: 15–32.
- Tunheng, A and Hirata, T. (2004) Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry. *Journal of Analytical Atomic Spectrometry*, 7: 932–934.
- Vermeesch, P. (2004) How many grains are needed for a provenance study? *Earth and Planetary Science Letters* 224: 441–451

- Williams, I. S. (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben, M. A., Shanks, W. C. P. and Ridley, W. I. (Ed.), *Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology 7*, Society of Economic Geologists, Littleton, CO. USA: 1–35.
- Xu, X., O'Reilly, S. Y., Griffin, W. L., Wang, X, Pearson, N. J. and He, Z. (2007) The crust of Cathaysia: Age, assem-

bly and reworking of two terranes. *Precambrian Research*, **158**: 51–78.

Zhou, M.-F., Yan, D.-P., Kennedy, A. K., Li, Y. and Ding, J. (2002) SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. *Earth and Planetary Science Letters*, **196**: 51–67.

Appendix

Table A1. LA-ICP-MS U–Pb data and calculated ages of zircons in the samples.

	²⁰⁶ Ph ⁽¹⁾	U	Th		22820(-+*(1)	207	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	Disc ⁽²⁾	
Labels	$(\%)^{10}$	(ppm)	(ppm)	Th/U	$^{238}\text{U}/^{206}\text{Pb}^{*(1)}$	²⁰ /Pb*/ ²⁰⁶ Pb*(1)	$age^{(1)}$ (Ma)	$age^{(1)}$ (Ma)	(%)	Remarks
NIZ 001	0.50	250	(FF)	1 47	54.00 ± 1.20	0.0202 ± 0.0100			()	
NZ_001	0.59	339	515 152	1.4/	54.09 ± 1.28	0.0393 ± 0.0100 0.1211 ± 0.0020	118.1 ± 2.8 1692 7 ± 10.9	2114 ± 26	20.25	diagondont
NZ_002	0.12	520 52	133	0.48	3.33 ± 0.04 25.00 ± 0.73	0.1311 ± 0.0020 0.0522 ± 0.0051	1083.7 ± 19.8 251.0 ± 7.2	2114 - 20	20.55	discordant
NZ_{004}	0.00	496	117	0.48	23.09 ± 0.73 3.04 ± 0.03	0.0332 ± 0.0031 0.1135 ± 0.0014	231.9 ± 7.2 1835 6 + 17 8	1857 ± 22	1 1 5	
NZ_004	0.13	538	178	0.24	3.04 ± 0.03 30.02 ± 0.45	0.1133 ± 0.0014 0.0489 ± 0.0026	1033.0 ± 17.0 211 3 + 3 1	1007 - 22	1.15	
NZ_006	0.00	249	221	0.91	30.02 = 0.43 30.19 ± 0.51	0.0481 ± 0.0020	211.3 = 3.1 210.1 ± 3.5			
NZ_{007}	0.00	296	103	0.36	3.27 ± 0.04	0.0101 ± 0.0023 0.1153 ± 0.0014	1718.7 ± 17.1	1886 ± 21	8.87	
NZ_008	0.95	236	160	0.69	34.36 ± 0.83	0.0444 ± 0.0067	185.0 ± 4.4	1000 21	0.07	
NZ_009	0.34	519	199	0.39	35.39 ± 0.54	0.0523 ± 0.0030	179.6 ± 2.7			
NZ_010	0.00	195	148	0.78	26.04 ± 0.49	0.0481 ± 0.0024	243.0 ± 4.5			
NZ_011	1.38	203	199	1.01	63.81 ± 1.92	0.0369 ± 0.0108	100.2 ± 3.0			
NZ_012	0.86	77	124	1.65	3.38 ± 0.06	0.1062 ± 0.0089	1672.0 ± 25.8	1735 ± 148	3.63	
NZ_013	0.25	255	332	1.34	53.59 ± 1.17	0.0470 ± 0.0083	119.2 ± 2.6			
NZ_014	0.16	335	239	0.73	34.56 ± 0.63	0.0485 ± 0.0050	183.9 ± 3.3			
NZ_015	0.53	270	198	0.75	34.01 ± 0.69	0.0499 ± 0.0051	186.8 ± 3.7			
NZ_016	0.00	80	42	0.54	30.75 ± 0.85	0.0566 ± 0.0054	206.3 ± 5.6			
NZ_017	0.63	240	108	0.46	30.05 ± 0.56	0.0498 ± 0.0050	211.0 ± 3.9			
NZ_018	0.00	426	461	1.11	56.51 ± 1.06	0.0529 ± 0.0028	113.1 ± 2.1	1015 1 00		
NZ_019	0.00	115	51	0.46	4.26 ± 0.06	0.1128 ± 0.0024	1358.1 ± 18.5	1845 ± 39	26.39	discordant
NZ_020	0.00	152	53	0.36	3.32 ± 0.05	0.1142 ± 0.0021	1696.4 ± 20.5	1868 ± 32	9.18	
NZ_021	0.00	305	277	0.93	13.77 ± 0.18	0.0547 ± 0.0018	452.1 ± 5.7			
NZ_022	0.50	/8	49	0.65	39.46 ± 1.42	0.0593 ± 0.0125 0.1476 ± 0.0024	161.3 ± 5.7	2210 ± 20	6 17	
NZ_024	0.38	90	1/0	0.75	2.30 ± 0.04	$0.14/0 \pm 0.0034$ 0.0471 ± 0.0025	$2108.9 \pm 2/.4$ 187.2 + 2.4	2319 - 39	0.4/	
NZ_024	0.00	202	51	0.58	33.91 ± 0.02 20 71 ± 0.75	$0.04/1 \pm 0.0023$ 0.0472 ± 0.0037	$10/.5 \pm 5.4$ 213 4 + 5 3			
NZ_{025}	0.00	264	120	0.55	29.71 ± 0.73 2 71 + 0.03	0.0472 ± 0.0037 0.1333 ± 0.0018	213.4 ± 3.3 2023.8 ± 20.7	2143 + 23	5 56	
NZ_{027}	0.00	20 4 769	443	0.50	2.71 = 0.03 2.89 ± 0.03	0.1333 = 0.0010 0.1319 ± 0.0020	1025.0 - 20.7 1016.0 + 18.8	21+3 = 23 2125 + 26	9.83	
NZ_{028}	0.00	557	316	0.59	35.42 ± 0.55	0.1319 ± 0.0020 0.0543 ± 0.0019	179.5 ± 2.8	2125 - 20	2.05	discordant
NZ_{029}	0.00	263	127	0.50	3.09 ± 0.04	0.0313 ± 0.0019 0.1134 ± 0.0014	1808.1 ± 20.8	1855 ± 23	2.53	discordunt
NZ_030	1.80	143	148	1.06	50.61 ± 1.43	0.0361 ± 0.0112	126.1 ± 3.5	1000 20	2.00	
NZ_031	0.01	442	146	0.34	20.82 ± 0.32	0.0537 ± 0.0023	302.4 ± 4.5	357 ± 95	15.28	
NZ_032	0.00	183	97	0.54	32.48 ± 0.71	0.0524 ± 0.0034	195.5 ± 4.2	302 ± 143	35.27	
NZ_033	0.78	285	208	0.75	35.15 ± 0.69	0.0434 ± 0.0057	180.8 ± 3.5			
NZ_034	0.96	184	94	0.52	32.17 ± 0.72	0.0398 ± 0.0059	197.3 ± 4.3			
NZ_035	0.00	172	86	0.51	2.91 ± 0.04	0.1156 ± 0.0018	1904.9 ± 21.1	1890 ± 28	-0.79	
NZ_036	0.00	849	343	0.41	32.06 ± 0.44	0.0510 ± 0.0016	198.0 ± 2.7			
NZ_037	0.46	155	75	0.50	33.65 ± 0.68	0.0464 ± 0.0065	188.8 ± 3.8			
NZ_038	1.11	264	143	0.56	3.43 ± 0.06	0.1036 ± 0.0068	1648.9 ± 26.0	1690 ± 117	2.43	
NZ_039	0.00	822	542	0.68	3.22 ± 0.03	0.1150 ± 0.0011	1743.0 ± 15.1	1882 ± 17	7.38	
NZ_040	0.00	1052	57	0.06	29.17 ± 0.34	0.0513 ± 0.0016	217.3 ± 2.5	$15(5 \pm 51)$	(1.25	1
NZ_041	0.00	149	96	0.66	11.03 ± 0.25	0.0968 ± 0.0027	559.5 ± 12.1	1365 ± 51	64.25 18.02	discordant
NZ_042	0.00	233	218	0.90	3.04 ± 0.04 2.12 ± 0.05	0.1404 ± 0.0019 0.1728 \pm 0.0055	1831.2 ± 20.3 2402.2 ± 44.4	2234 ± 24 2586 ± 52	18.05	discordant
NZ_{043}	1 21	143	43	0.00	2.12 ± 0.03 30.82 ± 0.66	0.1728 ± 0.0033 0.0538 ± 0.0048	2493.3 ± 44.4 205.9 ± 4.3	2380 ± 32	5.50	
NZ 045	0.00	323	300	0.91	30.82 ± 0.00 29.75 ± 0.60	0.0538 ± 0.0048 0.0500 ± 0.0024	203.9 ± 4.3 213 1 + 4 2			
NZ_046	0.54	438	67	0.16	3.96 ± 0.05	0.0300 ± 0.0024 0.1174 ± 0.0016	1451.1 ± 16.1	1919 ± 24	24 38	discordant
NZ_{047}	0.00	168	150	0.10	28.94 ± 0.68	0.0551 ± 0.0033	219.0 ± 5.1	1)1) - 21	21.30	discordunt
NZ_048	0.00	97	70	0.75	29.91 ± 0.85	0.0481 ± 0.0045	212.0 ± 5.9			
NZ_049	0.08	266	171	0.66	34.89 ± 0.67	0.0523 ± 0.0056	182.1 ± 3.4			
NZ_050	0.00	86	71	0.84	51.34 ± 1.65	0.0465 ± 0.0059	124.3 ± 4.0			
NZ_051	0.00	417	321	0.79	29.88 ± 0.46	0.0519 ± 0.0022	212.2 ± 3.2			
NZ_052	0.00	600	368	0.63	28.40 ± 0.46	0.0499 ± 0.0018	223.1 ± 3.5			
NZ_053	0.27	260	94	0.37	33.22 ± 0.69	0.0465 ± 0.0046	191.2 ± 3.9			
NZ_054	0.00	139	72	0.53	3.39 ± 0.05	0.1169 ± 0.0022	1667.1 ± 23.2	1910 ± 34	12.72	
NZ_055	0.00	189	144	0.78	29.49 ± 0.62	0.0543 ± 0.0034	215.0 ± 4.4			
NZ_056	0.00	157	98	0.64	25.60 ± 0.51	0.0498 ± 0.0029	247.0 ± 4.9			
NZ_057	1.01	80	80	1.02	$28.5 / \pm 0.8 /$	0.0430 ± 0.0119	221.8 ± 6.6			
NZ_050	0.00	210	48	0.23	29.39 ± 0.60	0.0514 ± 0.0024 0.1127 ± 0.0017	214.3 ± 4.3	1945 ± 26	11 00	
NZ_029	0.00	∠04 800	110	0.42	3.49 ± 0.00 24.01 ± 0.22	$0.112 / \pm 0.001 / 0.0515 \pm 0.0020$	1023.9 ± 23.0 252.7 ± 2.2	1043 - 20	11.88	
NZ 061	0.00	020 307	101	0.30	24.71 ± 0.32 3 07 + 0 03	0.0313 ± 0.0020 0.1226 ± 0.0014	233.7 ± 3.2 1815 4 ± 17.9	1996 + 20	0.05	
NZ 062	0.00	223	82	0.34	26.77 ± 0.05	0.0508 ± 0.0014	2364 ± 49	1770 - 20	1.05	
NZ 063	0.12	320	242	0.78	53.00 ± 1.16	0.0474 ± 0.0060	120.5 ± 2.6			
NZ 064	0.00	240	78	0.33	31.00 ± 0.62	0.0530 ± 0.0030	204.7 ± 4.1			
NZ_065	0.22	691	200	0.30	36.23 ± 0.52	0.0511 ± 0.0030	175.5 ± 2.5			

					14010	TTT: Continueu:				
T 1 1	²⁰⁶ Pb. ⁽¹⁾) U	Th		2387 7 (206 51 *(1)	20751 * 20651 *(1)	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	Disc ⁽²⁾	
Labels	(%) ^c	(ppm)	(ppm)	Th/U	²³⁸ U/ ²⁰⁰ Pb ⁺⁽¹⁾	²⁰⁷ Pb ⁺ / ²⁰⁰ Pb ⁺ (1)	age ⁽¹⁾ (Ma)	age ⁽¹⁾ (Ma)	(%)	Remarks
N7 066	0.22	107	102	0.56	24.26 ± 0.66	0.0479 ± 0.0061	1955+25	0 ()		
NZ_067	0.33	187	103	0.30	34.20 ± 0.00 34.82 ± 0.61	$0.04/8 \pm 0.0001$ 0.0508 ± 0.0024	183.3 ± 3.3 182.5 ± 2.1			
NZ_068	0.05	1057	224	0.39	34.03 ± 0.01 2 25 ± 0.04	0.0308 ± 0.0034 0.1124 ± 0.0011	162.3 ± 3.1 1720.8 ± 18.1	1840 ± 18	5.00	
NZ_060	0.00	129	04	0.22	3.23 ± 0.04 27.03 ± 0.64	0.1124 ± 0.0011 0.0558 ± 0.0039	1729.0 ± 10.1 234.1 ± 5.4	1040 - 10	5.99	
NZ_070	0.00	05	82	0.75	27.03 ± 0.04 30.08 ± 0.78	0.0338 ± 0.0039	234.1 ± 5.4 210.8 ± 5.4			
NZ_071	0.00	350	62 53	0.89	30.08 ± 0.78 2 98 + 0.04	0.0433 ± 0.0039 0.1255 ± 0.0015	210.6 ± 3.4 1864 1 + 19 7	2037 ± 22	8 40	
NZ 072	0.22	68	86	1 30	2.98 = 0.04 28 78 + 0.86	0.1233 = 0.0013 0.0430 ± 0.0047	220.2 ± 6.5	2037 - 22	0.77	
NZ 073	0.00	216	90	0.43	3.02 ± 0.03	0.0450 = 0.0047 0.1168 ± 0.0017	1843 3 + 18 2	1908 ± 26	3 30	
NZ_074	0.00	133	70	0.13	34.19 ± 0.90	0.0636 ± 0.0017	185.8 ± 4.8	1900-20	5.57	discordant
NZ_075	0.00	251	233	0.95	59.77 ± 1.43	0.0050 ± 0.0010 0.0454 ± 0.0096	107.0 ± 2.5			aiseoraain
NZ_076	0.00	205	178	0.89	28.80 ± 0.57	0.0493 ± 0.0028	220.1 ± 4.3			
NZ_077	0.00	47	29	0.63	30.14 ± 0.95	0.0506 ± 0.0063	210.4 ± 6.5			
NZ 078	0.00	1430	400	0.29	28.76 ± 0.34	0.0495 ± 0.0010	220.4 ± 2.6			
NZ 079	0.00	785	311	0.41	37.33 ± 0.48	0.0505 ± 0.0019	170.4 ± 2.2			
NZ 080	0.00	222	162	0.75	32.40 ± 0.66	0.0466 ± 0.0029	195.9 ± 3.9			
NZ 081	0.39	411	442	1.10	35.61 ± 0.66	0.0492 ± 0.0061	178.6 ± 3.3			
NZ_082	0.00	513	215	0.43	3.34 ± 0.04	0.1135 ± 0.0014	1686.2 ± 16.1	1857 ± 21	9.20	
NZ_083	0.17	356	170	0.49	2.83 ± 0.04	0.1391 ± 0.0018	1948.3 ± 25.9	2217 ± 22	12.12	
NZ_084	0.00	237	77	0.33	25.71 ± 0.46	0.0541 ± 0.0032	246.0 ± 4.3			
NZ_085	0.05	317	69	0.22	3.85 ± 0.05	0.1159 ± 0.0017	1487.1 ± 16.6	1894 ± 27	21.49	discordant
NZ_086	0.04	207	61	0.30	3.41 ± 0.04	0.1192 ± 0.0022	1657.5 ± 18.5	1946 ± 32	14.82	
NZ_087	0.00	83	42	0.52	35.07 ± 1.14	0.0495 ± 0.0056	181.3 ± 5.8			
NZ_088	0.00	1278	801	0.64	24.20 ± 0.26	0.0503 ± 0.0013	261.1 ± 2.8			
NZ_089	0.00	656	358	0.56	35.95 ± 0.53	0.0518 ± 0.0018	176.9 ± 2.6			
NZ_090	0.00	282	73	0.27	3.22 ± 0.04	0.1133 ± 0.0014	1744.1 ± 16.9	1854 ± 22	5.93	
NZ_091	0.30	187	79	0.43	33.15 ± 0.82	0.0500 ± 0.0050	191.6 ± 4.7			
NZ_092	0.00	746	362	0.50	33.39 ± 0.47	0.0509 ± 0.0018	190.2 ± 2.6			
NZ_093	0.00	74	57	0.80	28.75 ± 0.91	0.0528 ± 0.0054	220.4 ± 6.8			
NZ_094	0.22	1533	835	0.56	29.95 ± 0.36	0.0511 ± 0.0022	211.7 ± 2.5			
NZ_095	0.19	822	175	0.22	33.81 ± 0.44	0.0493 ± 0.0023	187.9 ± 2.4			
NZ_096	0.00	55	29	0.54	31.27 ± 1.06	0.0618 ± 0.0065	202.9 ± 6.8			
NZ_097	0.15	199	132	0.68	33.20 ± 0.75	0.0422 ± 0.0064	191.3 ± 4.3			
NZ_098	0.00	1170	308	0.27	25.55 ± 0.30	0.0508 ± 0.0011	$24/.5 \pm 2.8$			
NZ_099	1.70	030	275	0.45	34.93 ± 0.54	0.0489 ± 0.0040 0.1120 \pm 0.0012	182.0 ± 2.8	1022 ± 10	12 (5	
NZ_100	0.00	994	95	0.10	3.59 ± 0.04	0.1120 ± 0.0012	1582.8 ± 15.2	1833 ± 19	13.65	
NZ_{102}	0.00	248	/4 165	0.08	00.27 ± 2.02 2.08 ± 0.05	0.0400 ± 0.0037 0.1121 ± 0.0012	100.1 ± 3.3 1864.7 ± 25.7	1851 ± 20	-0.74	
NZ_{102}	0.00	240	103	0.49	2.96 ± 0.03 22.84 ± 0.58	0.1131 ± 0.0012 0.0452 ± 0.0027	1004.7 ± 23.7 102.4 ± 2.2	1631 ± 20	-0.74	
NZ_{103}	0.00	262	106	0.41	32.04 ± 0.58 34.05 ± 0.68	0.0452 ± 0.0027 0.0452 ± 0.0066	193.4 ± 3.3 186.6 ± 3.7			
NZ_{104}	0.11	232	40	0.80	34.03 ± 0.08 30.08 ± 0.04	0.0432 ± 0.0000	180.0 ± 3.7 210.8 ± 6.5			
NZ_{105}	0.00	313	189	0.50	30.03 ± 0.94 34.82 ± 0.75	0.0437 ± 0.0030 0.0397 ± 0.0055	1825 ± 3.9			
NZ_{107}	0.01	257	55	0.02	34.02 = 0.73 35.06 ± 0.71	0.0377 = 0.0033 0.0471 ± 0.0028	182.3 = 3.9 181.3 + 3.6			
NZ_{108}	0.00	234	56	0.22	3.00 = 0.71 3.11 ± 0.04	0.0471 = 0.0028 0.1159 ± 0.0018	1798.9 + 20.2	1895 ± 28	5.07	
NZ 109	1 40	95	106	1 14	31.30 ± 1.04	0.0475 ± 0.0010	202.7 ± 6.6	1075 - 20	5.07	
NZ 110	0.00	425	594	1 43	15.36 ± 0.20	0.0179 ± 0.0017	406.7 ± 5.2			
NZ_111	0.00	551	227	0.42	30.94 ± 0.47	0.0502 ± 0.0018	205.0 ± 3.1			
NZ 112	0.00	119	17	0.14	35.22 ± 1.01	0.0572 ± 0.0043	180.5 ± 5.1			
NZ 113	0.04	719	22	0.03	3.63 ± 0.04	0.1278 ± 0.0012	1569.3 ± 16.1	2069 ± 16	24.15	discordant
NZ ¹¹⁴	0.00	322	209	0.67	35.53 ± 0.65	0.0453 ± 0.0022	178.9 ± 3.2			
NZ ¹¹⁵	0.20	309	36	0.12	27.04 ± 0.45	0.0513 ± 0.0030	234.1 ± 3.8			
NZ ¹¹⁶	0.00	195	64	0.34	3.90 ± 0.05	0.1113 ± 0.0018	1470.8 ± 17.1	1821 ± 30	19.23	discordant
NZ ¹¹⁷	0.06	228	125	0.56	3.21 ± 0.04	0.1165 ± 0.0021	1746.9 ± 20.3	1904 ± 32	8.25	
NZ_118	0.00	302	130	0.44	34.19 ± 0.56	0.0514 ± 0.0029	185.8 ± 3.0			
NZ_119	0.00	269	213	0.81	3.12 ± 0.04	0.1135 ± 0.0014	1789.7 ± 19.8	1857 ± 21	3.62	
NZ_120	0.00	226	118	0.54	26.03 ± 0.50	0.0499 ± 0.0025	243.0 ± 4.6			
NZ_121	0.00	496	504	1.04	29.63 ± 0.48	0.0521 ± 0.0018	214.0 ± 3.4			
NZ_122	0.02	105	59	0.58	2.63 ± 0.04	0.1544 ± 0.0034	2079.7 ± 29.1	2396 ± 37	13.20	
NZ_123	0.96	87	75	0.88	58.17 ± 2.20	0.0473 ± 0.0149	109.9 ± 4.1			
NZ_124	0.01	136	97	0.73	34.86 ± 0.81	0.0537 ± 0.0086	182.3 ± 4.2			
NZ_125	0.03	452	150	0.34	3.67 ± 0.06	0.1113 ± 0.0018	1553.9 ± 23.4	1822 ± 29	14.72	
NZ_126	0.01	388	195	0.52	35.53 ± 0.66	0.0484 ± 0.0041	178.9 ± 3.3			
NZ_127	1.20	315	447	1.45	68.60 ± 2.00	0.0416 ± 0.0117	93.3 ± 2.7	10(7 + 25	10 5 1	
NZ_128	0.28	513	134	0.27	3.19 ± 0.04	$0.120/\pm 0.0024$	$1/55.8 \pm 19.7$	1967 ± 35	10.74	
NZ_129	0.00	127	83	0.67	3.09 ± 0.05	0.1144 ± 0.0024	1805.2 ± 23.3	$18/1 \pm 38$	3.52	
INZ 130	0.46	131	63	0.50	30.23 ± 1.00	0.0451 ± 0.0070	1/3.4 ± 4.8			

Table A1. Continued.

Table A1. Continued.

	206 ph (1)	U II	Th		220 20 <i>(</i> +(1))		²³⁸ L1/ ²⁰⁶ Ph*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	Disc ⁽²⁾	
Labels	$(\%)^{10_{c}}$	(ppm)	(ppm)	Th/U	$^{238}\text{U}/^{206}\text{Pb}^{*(1)}$	$^{207}\text{Pb}^{*/^{206}}\text{Pb}^{*(1)}$	$age^{(1)}$ (Ma)	$age^{(1)}$ (Ma)	(%)	Remarks
NZ 131	0.00	168	101	0.62	35.68 ± 0.78	0.0432 ± 0.0035	1782 + 30	<u> </u>	. ,	
NZ 132	0.00	121	72	0.62	35.08 ± 0.78 26 32 ± 0.53	0.0432 ± 0.0033 0.0520 ± 0.0038	178.2 ± 5.9 240 4 ± 4 8			
NZ 133	0.00	278	133	0.49	30.78 ± 0.54	0.0320 = 0.0030 0.0467 ± 0.0025	206.1 ± 3.6			
NZ ¹³⁴	0.08	463	74	0.16	2.99 ± 0.04	0.1124 ± 0.0017	1860.2 ± 22.1	1839 ± 28	-1.15	
NZ_135	0.00	433	239	0.56	30.68 ± 0.59	0.0518 ± 0.0040	206.7 ± 3.9			
NZ_136	0.00	268	84	0.32	3.16 ± 0.05	0.1161 ± 0.0015	1773.7 ± 22.8	1898 ± 23	6.55	
NZ_137	0.64	113	76	0.69	29.78 ± 0.86	0.0496 ± 0.0084	212.9 ± 6.0			
NZ_138	0.00	117	164	1.45	40.98 ± 1.07	0.0527 ± 0.0047	155.4 ± 4.0			
NZ_139	0.00	302	95	0.32	$24.0/\pm0.46$	0.0510 ± 0.0022	262.4 ± 5.0			
NZ_140	0.00	97 56	40	0.48	30.82 ± 0.93 33.65 ± 1.10	0.0304 ± 0.0049 0.0634 ± 0.0115	203.8 ± 0.2 188.8 ± 6.6			
NZ_{141}	0.00	517	104	0.01	263 ± 0.03	0.0034 ± 0.0113 0.1596 ± 0.0022	2075.9 ± 20.4	2453 ± 22	15 37	discordant
NZ 143	0.00	88	77	0.90	34.03 ± 1.03	0.0445 ± 0.0047	186.7 ± 5.6	2100 22	10.07	aiseoraani
NZ ¹⁴⁴	0.45	212	107	0.52	33.93 ± 0.71	0.0449 ± 0.0056	187.3 ± 3.9			
NZ_145	1.35	145	132	0.94	37.51 ± 1.00	0.0401 ± 0.0099	169.6 ± 4.5			
NZ_146	0.00	93	61	0.67	29.26 ± 0.83	0.0481 ± 0.0040	216.7 ± 6.0			
YK_001	0.00	269	163	0.62	34.85 ± 0.57	0.0508 ± 0.0024	182.4 ± 2.9			
YK_002	0.22	649	118	0.19	26.82 ± 0.36	0.0480 ± 0.0018	236.0 ± 3.1			
YK_003	0.00	778	404	0.53	35.11 ± 0.38	0.0517 ± 0.0013	181.1 ± 2.0	2279 ± 17	()5	
YK_004	0.00	333 212	151	0.47	2.42 ± 0.03 2.62 ± 0.03	0.1527 ± 0.0016 0.1300 ± 0.0012	2229.4 ± 23.3 2074 2 + 21 4	$23/8 \pm 1/$ 2215 ± 16	6.25	
1K_005	0.00	245	257	0.78	2.03 ± 0.03 2.80 ± 0.03	0.1390 ± 0.0013 0.1231 ± 0.0015	$20/4.2 \pm 21.4$ 1967 8 + 18 4	2213 ± 10 2003 ± 22	0.50	
YK_007	0.00	235	102	0.45	23.75 ± 0.35	0.0551 ± 0.0023	265.9 ± 3.8	2005 - 22	1.70	
YK_008	0.00	203	143	0.72	2.69 ± 0.03	0.1395 ± 0.0016	2035.7 ± 22.2	2222 ± 20	8.38	
YK 009	0.19	435	66	0.16	3.26 ± 0.04	0.1155 ± 0.0017	1726.0 ± 17.7	1889 ± 26	8.63	
YK_010	0.00	240	242	1.04	30.53 ± 0.67	0.0632 ± 0.0031	207.8 ± 4.5			discordant
YK_011	0.00	141	70	0.51	35.92 ± 0.80	0.0513 ± 0.0037	177.0 ± 3.9			
YK_012	0.64	141	82	0.59	29.93 ± 0.65	0.0469 ± 0.0061	211.9 ± 4.6		0.40	
YK_013	0.17	227	72	0.32	3.31 ± 0.04	0.1137 ± 0.0018	1703.8 ± 18.6	1860 ± 28	8.40	
YK_014	0.00	69 82	45	0.68	35.29 ± 0.91	0.0510 ± 0.0051 0.0576 ± 0.0051	180.1 ± 4.6 215.4 ± 5.0			
1K_015 VK_016	0.30	05 481	178	0.23	29.43 ± 0.70 2 82 + 0.04	0.0370 ± 0.0031 0.1416 + 0.0013	213.4 ± 3.0 1957 4 + 22 3	2248 + 16	12.93	
YK 017	0.00	281	148	0.58	2.02 = 0.04 30 46 ± 0.49	0.1410 = 0.0013 0.0538 ± 0.0024	208.2 ± 3.3	2240 - 10	12.75	
YK_018	0.00	463	263	0.58	38.75 ± 0.65	0.0474 ± 0.0020	164.2 ± 2.7			
YK_019	0.00	264	133	0.52	25.34 ± 0.43	0.0523 ± 0.0020	249.5 ± 4.1			
YK_020	0.29	269	89	0.34	33.71 ± 0.68	0.0497 ± 0.0041	188.4 ± 3.8			
YK_021	0.04	74	46	0.63	35.04 ± 1.11	0.0557 ± 0.0103	181.4 ± 5.7			
YK_022	0.06	309	151	0.50	29.53 ± 0.48	0.0492 ± 0.0038	214.7 ± 3.4	10(1 + 20	1 50	
YK_023	0.00	92	103	1.16	3.05 ± 0.04	0.1137 ± 0.0019	1829.3 ± 21.4	1861 ± 29	1.70	
$1 K_{024}$	0.00	03 378	44 86	0.70	20.92 ± 0.74 28 20 ± 0.44	0.0427 ± 0.0048 0.0545 ± 0.0028	233.2 ± 0.4 224.7 ± 3.5			
YK 025	0.00	628	333	0.23	28.20 ± 0.03	0.0343 ± 0.0028 0.1280 ± 0.0011	18105 ± 169	2072 ± 15	12 62	
YK_027	0.37	41	12	0.30	24.77 ± 0.79	0.0372 ± 0.0085	255.1 ± 8.0	2072-15	12.02	
YK 028	0.00	319	133	0.43	31.09 ± 0.48	0.0498 ± 0.0026	204.1 ± 3.1			
YK_029	0.02	829	430	0.53	29.75 ± 0.41	0.0515 ± 0.0026	213.1 ± 2.9			
YK_030	0.93	153	78	0.52	34.82 ± 0.70	0.0445 ± 0.0061	182.5 ± 3.6			
YK_031	0.00	174	87	0.51	57.26 ± 1.42	0.0480 ± 0.0042	111.6 ± 2.7			
YK_032	0.09	250	129	0.53	31.42 ± 0.68	0.0481 ± 0.0045	202.0 ± 4.3			
YK_{024}	0.00	605	21	0.03	26.09 ± 0.33	$0.0490 \pm 0.001 /$ 0.0502 ± 0.0021	242.5 ± 3.0 105 4 ± 3.0			
1K_034 VK_035	0.07	1370	278 437	0.40	32.30 ± 0.30 24 91 + 0 27	0.0502 ± 0.0031 0.0528 ± 0.0011	193.4 ± 3.0 253.7 ± 2.7			
YK_036	0.15	185	104	0.58	27.96 ± 0.61	0.0320 ± 0.0011 0.0499 ± 0.0050	235.7 = 2.7 226.6 ± 4.8			
YK_037	0.23	528	97	0.19	2.99 ± 0.03	0.1309 ± 0.0018	1859.6 ± 18.9	2111 ± 23	11.91	
YK_038	0.72	317	187	0.61	34.16 ± 0.52	0.0481 ± 0.0047	186.0 ± 2.8			
YK_039	0.16	238	81	0.35	33.52 ± 0.62	0.0506 ± 0.0040	189.5 ± 3.4			
YK_040	0.00	384	472	1.26	66.76 ± 1.32	0.0508 ± 0.0034	95.8 ± 1.9			
YK_041	0.00	262	47	0.18	34.72 ± 0.59	0.0480 ± 0.0024	183.1 ± 3.1			
1K_042 VK_042	0.00	392 517	39/ 211	1.04 0.49	32.24 ± 0.43 13 27 + 0.10	0.0520 ± 0.0022 0.0530 ± 0.0024	190.9 ± 2.6 468.4 ± 6.4			
YK 044	0.20	803	128	0.40	13.27 ± 0.19 24 60 ± 0.34	0.0530 ± 0.0024 0.0519 ± 0.0013	2568 ± 35			
YK 045	0.00	374	180	0.49	34.06 ± 0.55	0.0493 ± 0.0020	186.5 ± 3.0			
YK_046	0.16	597	48	0.08	3.15 ± 0.03	0.1161 ± 0.0013	1779.2 ± 14.6	1898 ± 20	6.26	
YK_047	0.00	118	104	0.90	32.72 ± 0.82	0.0613 ± 0.0047	194.1 ± 4.8			discordant
YK_048	0.00	222	59	0.27	3.39 ± 0.05	0.1127 ± 0.0018	1664.9 ± 20.3	1845 ± 30	9.76	
YK_049	0.00	133	63	0.49	32.41 ± 0.72	0.0470 ± 0.0032	195.9 ± 4.3			

					14010	AI. Continued.				
Labels	²⁰⁶ Pb _c ⁽¹⁾) U	Th	Th/U	²³⁸ U/ ²⁰⁶ Pb*(1)	²⁰⁷ Pb*/ ²⁰⁶ Pb* ⁽¹⁾	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	Disc ⁽²⁾	Remarks
	(%)	(ppm)	(ppm)				age ⁽¹⁾ (Ma)	$age^{(1)}$ (Ma)	(%)	
YK 050	0.00	88	49	0.57	28.80 ± 0.67	0.0496 ± 0.0044	220.0 ± 5.1			
YK_051	0.00	251	167	0.68	31.57 ± 0.59	0.0523 ± 0.0028	201.0 ± 3.7			
YK_052	0.00	152	87	0.59	32.23 ± 0.70	0.0463 ± 0.0033	197.0 ± 4.2			
YK_053	0.00	70	46	0.68	32.80 ± 0.81	0.0532 ± 0.0055	193.6 ± 4.7			
YK_054	0.16	78	38	0.50	21.23 ± 0.57	0.0564 ± 0.0071	296.7 ± 7.8			
YK_055	0.00	138	64	0.48	26.60 ± 0.52	0.0454 ± 0.0033	237.9 ± 4.6	1952 ± 25	22.07	1
1 K_{057}	0.00	202	27 58	0.07	4.04 ± 0.03 2 72 ± 0.04	0.1132 ± 0.0010 0.1186 ± 0.0014	1424.8 ± 10.3 1520.0 ± 15.2	1832 ± 23 1026 ± 21	23.07	discordant
YK_{058}	0.00	210	107	0.18	3.73 ± 0.04 33.77 ± 0.62	0.0495 ± 0.0014	1330.0 ± 13.3 188 1 ± 3 4	1930 - 21	20.97	uiscoruant
YK_059	1.31	60	16	0.27	28.33 ± 0.93	0.0653 ± 0.0097	223.6 ± 7.2			
YK 060	0.00	114	58	0.52	2.72 ± 0.03	0.1307 ± 0.0020	2019.0 ± 21.4	2109 ± 26	4.27	
YK_061	0.25	448	364	0.83	34.96 ± 0.58	0.0480 ± 0.0038	181.8 ± 3.0			
YK_062	0.08	380	310	0.84	14.48 ± 0.19	0.0560 ± 0.0030	430.4 ± 5.6			
YK_063	0.00	59	37	0.65	29.46 ± 0.81	0.0539 ± 0.0052	215.2 ± 5.8			
YK_064	0.04	458	46	0.10	3.47 ± 0.04	0.1140 ± 0.0012	1633.9 ± 15.1	1865 ± 20	12.39	
YK_065	0.00	217	109	0.52	36.82 ± 0.66	0.0536 ± 0.0030	172.7 ± 3.0			
YK_066	0.00	676	371	0.56	34.84 ± 0.49	0.0482 ± 0.0017	182.4 ± 2.6	2406 + 10	14.22	
YK_{00}	0.06	362	33	0.09	2.65 ± 0.03	0.1553 ± 0.0016	2061.3 ± 21.9	2406 ± 18	14.33	
YK_068	0.00	409	36	0.09	29.29 ± 0.40 15.01 ± 0.27	0.0504 ± 0.0020	216.4 ± 2.9	1217 ± 50	70.16	discondent
$1 K_{009}$	0.00	1260	563	0.57	13.91 ± 0.27 18 18 ± 0.23	0.0830 ± 0.0020 0.0540 ± 0.0000	393.0 ± 0.3 345.2 ± 4.3	1317 ± 39	/0.10	discordant
VK 071	0.00	232	151	0.40	10.10 ± 0.23 30.11 ± 0.48	0.0340 ± 0.0009 0.0486 ± 0.0024	343.2 ± 4.3 2106 + 33			
YK_072	0.16	252	128	0.51	35.75 ± 0.67	0.0430 = 0.0024 0.0477 ± 0.0046	177.8 ± 3.3			
YK 073	1.59	570	391	0.70	29.57 ± 0.48	0.0554 ± 0.0050	214.4 ± 3.4			
YK 074	0.00	882	234	0.27	40.23 ± 0.51	0.0478 ± 0.0017	158.3 ± 2.0			
YK_075	0.24	169	101	0.61	67.98 ± 1.84	0.0683 ± 0.0088	94.1 ± 2.5			discordant
YK_076	0.00	205	134	0.67	34.63 ± 0.70	0.0505 ± 0.0028	183.5 ± 3.6			
YK_077	0.00	812	624	0.79	30.19 ± 0.41	0.0485 ± 0.0013	210.0 ± 2.8			
YK_078	0.00	181	25	0.14	28.90 ± 0.52	0.0521 ± 0.0031	219.3 ± 3.9			
YK_079	0.23	89	78	0.89	30.82 ± 0.83	0.0536 ± 0.0091	205.8 ± 5.5			
YK_{080}	0.36	11/0	4/9	0.42	29.91 ± 0.39	0.0480 ± 0.0020 0.0472 ± 0.0040	212.0 ± 2.7 212.5 ± 2.5			
1K_081	0.15	41Z 260	297	0.74	29.84 ± 0.30 24.81 ± 0.40	$0.04/3 \pm 0.0040$ 0.0482 ± 0.0022	212.3 ± 3.3 182.6 ± 2.5			
VK 083	0.00	781	401	0.44	34.81 ± 0.49 34.57 ± 0.47	0.0485 ± 0.0022 0.0485 ± 0.0015	182.0 ± 2.3 183.8 ± 2.5			
YK_084	0.00	117	64	0.56	35.20 ± 0.82	0.0484 ± 0.0043	180.6 ± 4.2			
YK 085	0.00	176	65	0.38	3.65 ± 0.05	0.1105 ± 0.0021	1560.7 ± 20.5	1808 ± 35	13.68	
YK_086	0.16	142	96	0.69	34.08 ± 0.75	0.0498 ± 0.0064	186.4 ± 4.0			
YK_087	0.00	177	54	0.31	3.19 ± 0.04	0.1135 ± 0.0018	1758.2 ± 21.1	1857 ± 28	5.32	
YK_088	0.00	976	16	0.02	3.36 ± 0.03	0.1115 ± 0.0010	1678.6 ± 14.8	1824 ± 17	7.97	
YK_089	0.00	1137	436	0.39	32.44 ± 0.34	0.0515 ± 0.0013	195.7 ± 2.0			
YK_090	0.00	245	320	1.34	50.72 ± 0.97	0.0471 ± 0.0034	125.9 ± 2.4			
YK_091	0.00	86	55	0.66	26.30 ± 0.65	0.0503 ± 0.0043	240.6 ± 5.8			
YK_092	0.00	59 121	45	0.77	11.88 ± 0.29	0.0505 ± 0.0039 0.0471 ± 0.0026	520.9 ± 12.2			
1K_093	0.00	100	101	0.79	28.03 ± 0.03 22.16 ± 0.72	$0.04/1 \pm 0.0030$ 0.0424 ± 0.0060	221.2 ± 4.8 101 5 ± 4.2			
YK 095	0.09	719	448	0.74	33.10 ± 0.73 28 55 ± 0.34	0.0434 ± 0.0000 0.0525 ± 0.0017	191.3 ± 4.2 222.0 ± 2.6			
YK_096	0.00	227	188	0.85	20.33 ± 0.51 27.84 ± 0.53	0.0323 ± 0.0017 0.0495 ± 0.0028	222.0 = 2.0 227.5 ± 4.2			
YK_097	0.00	245	65	0.27	35.85 ± 0.66	0.0529 ± 0.0030	177.3 ± 3.2			
YK_098	0.34	170	107	0.65	34.66 ± 0.76	0.0488 ± 0.0065	183.3 ± 4.0			
YK_099	0.76	196	121	0.63	2.69 ± 0.03	0.1218 ± 0.0030	2040.0 ± 21.3	1984 ± 42	-2.82	
YK_100	0.25	181	50	0.28	3.81 ± 0.06	0.1252 ± 0.0030	1500.9 ± 22.2	2033 ± 41	26.18	discordant
YK_101	0.00	251	183	0.75	32.86 ± 0.62	0.0522 ± 0.0030	193.3 ± 3.6			
YK_102	0.00	1144	83	0.07	3.35 ± 0.04	0.1136 ± 0.0011	1684.4 ± 16.5	1858 ± 17	9.34	
YK_103	0.00	343	235	0.70	23.52 ± 0.39	0.0505 ± 0.0018	268.5 ± 4.4			
YK_{105}	0.00	31 227	52	1.70	30.31 ± 1.41	0.0360 ± 0.0100 0.1128 ± 0.0021	$1/3.1 \pm 6.7$ 1565.4 ± 17.7	1847 ± 22	15.25	discordort
VK 106	0.10	227 542	202	0.58	3.04 ± 0.03 2.45 ± 0.03	0.1120 ± 0.0021 0.1734 + 0.0015	$1303.4 \pm 1/.7$ 2203.0 + 21.2	10 + 7 - 33 2507 + 15	13.23	uiscordant
YK 107	0.00	572 676	293 537	0.35	$2.+5 \pm 0.05$ 31 65 ± 0.40	0.1754 ± 0.0015 0.0565 ± 0.0013	$2203.9 \div 21.3$ 200 5 + 2 0	2372 - 13	17.7/	
YK 108	0.00	990	1387	1.44	29.24 ± 0.33	0.0503 ± 0.0033 0.0504 ± 0.0011	216.8 ± 2.4			
YK 109	0.45	147	107	0.75	34.62 ± 0.74	0.0458 ± 0.0065	183.6 ± 3.9			
YK ¹¹⁰	0.00	319	136	0.44	33.90 ± 0.57	0.0445 ± 0.0034	187.4 ± 3.1			
YK_111	0.00	831	134	0.17	34.73 ± 0.43	0.0519 ± 0.0015	183.0 ± 2.2			
YK_112	0.00	866	696	0.82	29.49 ± 0.40	0.0544 ± 0.0013	215.0 ± 2.9			discordant
YK_113	0.13	205	65	0.32	28.32 ± 0.52	0.0554 ± 0.0038	223.7 ± 4.0			
YK 114	0.00	710	220	0.32	26.42 ± 0.35	0.0498 ± 0.0013	239.5 ± 3.1			

Table A1. Continued.

Table A1. Continued.

T 1 1	²⁰⁶ Pb _o ⁽¹⁾	U	Th	TTI/II	2381 1/20611 *(1)	207 1 * /206 1 * (1)	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	Disc ⁽²⁾	
Labels	(%)	(ppm)	(ppm)	Th/U	250 U/200 Pb (1)	207 Pb 7200 Pb (1)	age ⁽¹⁾ (Ma)	age ⁽¹⁾ (Ma)	(%)	Remarks
YK_115	0.00	326	115	0.36	2.42 ± 0.03	0.1209 ± 0.0013	2226.5 ± 25.7	1970 ± 19	-13.02	
YK_116	0.37	95	59	0.64	25.12 ± 0.61	0.0428 ± 0.0070	251.6 ± 6.0			
YK_117	0.00	153	107	0.72	24.03 ± 0.48	0.0521 ± 0.0028	262.9 ± 5.2			
YK_118 VK_119	0.00	234 112	82 79	0.36	30.00 ± 0.57 2 50 ± 0.03	0.0464 ± 0.0024 0.1489 ± 0.0024	206.9 ± 3.8 2167 3 + 25 2	2335 + 27	7 18	
YK ¹¹ 20	0.00	389	276	0.72	27.84 ± 0.43	0.0555 ± 0.0024	2107.5 ± 25.2 227.5 ± 3.5	2333 - 21	7.10	
YK_121	0.00	179	189	1.08	3.82 ± 0.06	0.1145 ± 0.0019	1499.7 ± 21.5	1874 ± 29	19.98	discordant
YK_122	0.00	210	110	0.54	2.82 ± 0.03	0.1437 ± 0.0019	1958.8 ± 19.8	2274 ± 22	13.86	
YK_123	0.62	298	169	0.58	30.45 ± 0.57	0.0523 ± 0.0040	208.3 ± 3.9			
YK_124 VK_125	0.00	105	89 177	0.87	32.44 ± 0.79 34.34 ± 0.66	0.0524 ± 0.0046 0.0517 ± 0.0048	195.7 ± 4.7 185.0 ± 3.5			
YK ¹²⁵	0.61	43	25	0.60	26.64 ± 1.22	0.0634 ± 0.0131	105.0 = 5.5 237.6 ± 10.7			
YK_127	0.14	631	76	0.12	35.89 ± 0.54	0.0473 ± 0.0022	177.2 ± 2.6			
YK_128	0.00	361	175	0.50	3.02 ± 0.03	0.1221 ± 0.0015	1846.2 ± 16.0	1988 ± 22	7.13	
YK_129	0.00	53	36	0.71	3.65 ± 0.06	0.1084 ± 0.0025	1560.7 ± 21.1	1773 ± 42	11.97	
YK_{121}	0.04	365	158	0.44	36.00 ± 0.58 17.62 ± 0.65	0.0510 ± 0.0044	176.6 ± 2.8			
YK 132	0.00	29 146	9 81	0.30	17.02 ± 0.03 33.06 ± 0.79	0.0318 ± 0.0038 0.0498 ± 0.0049	333.9 ± 12.9 1921 ± 45			
YK 133	0.00	250	104	0.42	5.46 ± 0.08	0.0490 ± 0.0049 0.1249 ± 0.0020	1084.4 ± 15.5	2029 ± 27	46.55	discordant
YK_134	0.00	1172	138	0.12	27.82 ± 0.30	0.0515 ± 0.0012	227.6 ± 2.4			
YK_135	0.21	474	70	0.15	3.60 ± 0.04	0.1104 ± 0.0016	1580.8 ± 14.1	1807 ± 26	12.52	
YK_136	0.00	163	88	0.55	34.32 ± 0.69	0.0508 ± 0.0029	185.2 ± 3.7			
YK_{120}	0.00	863	389	0.46	31.20 ± 0.36	0.0504 ± 0.0015 0.1120 ± 0.0018	203.4 ± 2.3	1924 ± 29	2 50	
1K_130	0.00	289 462	93 858	0.33	5.13 ± 0.04 56 30 + 1 23	0.1120 ± 0.0018 0.0454 ± 0.0113	$1/80.0 \pm 18.1$ 113 5 + 2 5	1834 - 28	2.38	
YK 140	0.27	1480	288	0.20	30.30 ± 0.26	0.0454 ± 0.0014 0.0467 ± 0.0014	286.6 ± 3.3			discordant
YK ¹⁴¹	0.49	345	95	0.28	34.19 ± 0.57	0.0486 ± 0.0034	185.9 ± 3.1			
YK_142	0.02	1016	233	0.23	3.02 ± 0.03	0.1233 ± 0.0010	1842.0 ± 16.9	2006 ± 15	8.17	
YK_143	0.13	770	422	0.56	30.10 ± 0.40	0.0519 ± 0.0025	210.7 ± 2.8			
YK_{145}	0.24	465	401	0.88	22.80 ± 0.31	0.0531 ± 0.0037 0.0501 ± 0.0034	276.7 ± 3.7			
SK 001	0.22	328 379	300	0.39	31.81 ± 0.48 3.63 ± 0.04	0.0301 ± 0.0034 0.1127 ± 0.0013	199.3 ± 2.9 1570.3 ± 16.8	1844 + 21	14 84	
SK_002	0.54	390	218	0.57	34.26 ± 0.54	0.0500 ± 0.0041	1370.5 ± 10.0 185.5 ± 2.9	1044 – 21	14.04	
SK_003	0.00	381	230	0.62	34.00 ± 0.54	0.0498 ± 0.0023	186.9 ± 2.9			
SK_004	0.00	185	119	0.66	59.70 ± 1.52	0.0456 ± 0.0034	107.1 ± 2.7			
SK_005	0.27	1458	253	0.18	2.92 ± 0.03	0.1233 ± 0.0014	1896.8 ± 19.6	2005 ± 21	5.40	
SK_006	0.60	191	104	0.56	32.72 ± 0.61	0.0467 ± 0.0056 0.0707 ± 0.0067	194.1 ± 3.5 1225 0 ± 21.2	1102 ± 157	- 2 77	
SK_007	3.99 0.00	183	121	1.05	4.78 ± 0.09 33.47 ± 0.76	0.0797 ± 0.0087 0.0578 ± 0.0031	1223.0 ± 21.3 189 8 + 4 3	1192 - 137	-2.77	discordant
SK_009	0.00	665	287	0.44	30.47 ± 0.44	0.0576 ± 0.0031 0.0507 ± 0.0014	208.2 ± 3.0			discordant
SK_010	0.30	454	197	0.45	36.51 ± 0.71	0.0487 ± 0.0033	174.2 ± 3.3			
SK_011	0.00	306	175	0.59	3.11 ± 0.04	0.1133 ± 0.0014	1796.2 ± 18.2	1854 ± 22	3.12	
SK_012	0.00	126	164	1.34	3.05 ± 0.04	0.1090 ± 0.0018	1827.4 ± 20.8	1783 ± 30	-2.49	
SK_013	0.29	212	56	0.27	27.58 ± 0.52	0.0536 ± 0.0034	229.6 ± 4.3			diacondont
SK_014	0.00	1045	1049 86	0.68	22.98 ± 0.29 26.84 ± 0.72	0.0396 ± 0.0033 0.0492 ± 0.0041	274.0 ± 3.4 235.8 ± 6.2			discordant
SK_016	0.00	552	522	0.97	28.90 ± 0.45	0.0487 ± 0.0043	233.0 = 0.2 219.3 ± 3.4			
SK_017	1.87	71	22	0.32	41.00 ± 1.44	0.0338 ± 0.0096	155.3 ± 5.4			
SK_018	0.00	278	215	0.79	34.02 ± 0.66	0.0520 ± 0.0030	186.8 ± 3.6			
SK_019	0.89	197	100	0.52	33.97 ± 0.65	0.0442 ± 0.0062	187.0 ± 3.5			
SK_020	0.00	99	68 577	0.70	61.28 ± 1.94	0.0414 ± 0.0061	104.4 ± 3.3 215.0 ± 2.2			
SK_021	0.08	301	159	0.51	29.30 ± 0.44 34.06 ± 0.68	0.0490 ± 0.0022 0.0436 ± 0.0045	213.9 ± 3.2 1865 ± 37			
SK_022	1.15	480	231	0.49	32.56 ± 0.70	0.0466 ± 0.0040	100.9 ± 9.7 195.0 ± 4.1			
SK_024	0.22	239	149	0.64	29.19 ± 0.67	0.0491 ± 0.0048	217.2 ± 4.9			
SK_025	0.24	485	141	0.30	32.35 ± 0.70	0.0447 ± 0.0030	196.3 ± 4.2			
SK_026	0.20	354	144	0.42	31.26 ± 0.56	0.0503 ± 0.0034	203.0 ± 3.6	1(0) + 172	10.70	
SK_027	1.10	25 280	121	2.25	5.08 ± 0.07 2.87 + 0.04	0.0990 ± 0.0097 0.1201 + 0.0017	1811.2 ± 34.9 1927.0 ± 25.1	1606 ± 172 1950 ± 25	- 12.78	
SK_020	0.00	200 519	93 71	0.55	2.07 ± 0.04 3.17 ± 0.04	0.1201 ± 0.0017 0.1124 ± 0.0015	1727.0 ± 23.1 1766 1 ± 18 5	1939 ± 23 1839 ± 23	3 97	
SK 030	0.00	508	378	0.76	5.82 ± 0.09	0.1098 ± 0.0017	1022.7 ± 15.2	1039 ± 23 1798 ± 27	43.12	discordant
SK_031	0.32	229	178	0.80	34.95 ± 0.84	0.0464 ± 0.0069	181.9 ± 4.3			
SK_032	1.18	242	234	0.99	31.65 ± 0.62	0.0382 ± 0.0071	200.5 ± 3.8			
SK_033	0.35	244	210	0.88	3.10 ± 0.04	0.1083 ± 0.0026	1801.3 ± 20.5	1773 ± 43	-1.60	
SK_034	0.00	2313	328	0.15	32./1 - 0.44	0.0490 ± 0.0009	194.1 - 2.0			

					Table	711. Continued.				
Labala	²⁰⁶ Pb _c ⁽¹) U	Th	Th/II	238 1 1/206 DL * (1)	207 ph* /206 ph* (1)	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	Disc ⁽²⁾	Domontra
Labels	(%)	(ppm)	(ppm)	I II/U	U/ PD ()	PD / PD ()	age ⁽¹⁾ (Ma)	age ⁽¹⁾ (Ma)	(%)	Remarks
SK 035	0.21	247	166	0.69	29.18 ± 0.57	0.0533 ± 0.0061	217.2 ± 4.2			
SK_036	0.00	307	171	0.57	62.59 ± 1.50	0.0501 ± 0.0032	102.2 ± 2.4			
SK_037	0.00	520	373	0.74	32.20 ± 0.49	0.0488 ± 0.0021	197.1 ± 2.9			
SK_038	0.00	353	233	0.68	29.90 ± 0.53	0.0493 ± 0.0026	212.1 ± 3.7			
SK_039	0.00	111	68	0.63	32.04 ± 0.86	0.0519 ± 0.0046	198.1 ± 5.2	2520 ± 20	12 (2	
SK_040	0.00) ک 17	18	0.33	2.49 ± 0.04	0.1661 ± 0.0039	$21/6.4 \pm 32.8$	2520 ± 39	13.63	
SK_041	0.22	817 278	339 150	0.08	37.36 ± 0.90 45.21 ± 0.88	0.0432 ± 0.0040 0.0467 ± 0.0060	111.0 ± 1.7 141.0 ± 2.7			
SK_042	0.70	176	73	0.33	45.21 ± 0.88 30 19 ± 0.75	0.0407 ± 0.0000 0.0430 ± 0.0053	141.0 ± 2.7 210.0 ± 5.2			
SK_044	0.09	927	76	0.08	3.06 ± 0.03	0.1185 ± 0.0013	1821.6 ± 17.9	1935 ± 19	5.86	
SK_045	0.00	116	69	0.61	33.07 ± 0.86	0.0575 ± 0.0040	192.0 ± 4.9			
SK_046	0.00	506	205	0.42	32.31 ± 0.52	0.0477 ± 0.0017	196.5 ± 3.1			
SK_047	0.03	388	30	0.08	3.17 ± 0.04	0.1140 ± 0.0013	1767.3 ± 19.4	1865 ± 21	5.24	
SK_048	0.26	245	52	0.22	3.50 ± 0.05	0.1089 ± 0.0022	1618.9 ± 21.2	1782 ± 36	9.15	
SK_049	0.39	109	56	0.52	34.11 ± 0.95	0.0446 ± 0.0070	186.3 ± 5.1	1057 1 00	5.07	
SK_050	0.13	551	113	0.21	3.19 ± 0.04	0.1135 ± 0.0014	1759.1 ± 21.6	1857 ± 23	5.27	
SK_051	0.02	2/4	155	0.58	30.05 ± 0.00 22.84 ± 0.66	$0.049 / \pm 0.0050$ 0.0545 ± 0.0031	206.9 ± 4.0 1877 + 26			
SK_052	1.52	103	90 63	0.43	33.84 ± 0.00 34.06 ± 0.98	0.0343 ± 0.0031 0.0357 ± 0.0090	187.7 ± 3.0 186.5 ± 5.3			
SK_054	0.60	535	412	0.79	34.65 ± 0.60	0.0337 ± 0.0090 0.0477 ± 0.0041	183.4 ± 3.1			
SK 055	0.07	230	89	0.40	3.74 ± 0.05	0.1064 ± 0.0020	1527.1 ± 20.0	1740 ± 34	12.23	
SK_056	0.00	198	91	0.47	33.29 ± 0.66	0.0508 ± 0.0033	190.8 ± 3.7			
SK_057	0.00	203	133	0.67	32.87 ± 0.74	0.0491 ± 0.0030	193.2 ± 4.3			
SK_058	0.00	390	58	0.15	28.05 ± 0.48	0.0534 ± 0.0024	225.8 ± 3.8			
SK_059	1.02	398	403	1.04	28.91 ± 0.52	0.0443 ± 0.0056	219.2 ± 3.9	1005 1 05		
SK_060	0.03	327	59	0.19	3.41 ± 0.05	0.1103 ± 0.0016	1656.4 ± 19.9	1805 ± 27	8.23	
SK_061	0.00	199	131	0.68	29.39 ± 0.60 24.81 ± 0.02	0.0467 ± 0.0028 0.0483 ± 0.0086	215.7 ± 4.3 182.6 ± 4.8			
SK_063	0.00	416	100	0.07	34.81 ± 0.92 3.13 ± 0.04	0.0483 ± 0.0080 0.1119 ± 0.0013	182.0 ± 4.8 1787.6 ± 17.7	1831 ± 20	2 37	
SK_064	2.14	56	16	0.20	36.83 ± 1.54	0.0355 ± 0.0123	172.7 ± 7.1	1051 - 20	2.57	
SK 065	0.00	116	75	0.67	29.86 ± 0.78	0.0433 ± 0.0039	212.3 ± 5.4			
SK_066	0.18	135	122	0.92	2.72 ± 0.04	0.1293 ± 0.0033	2016.8 ± 27.5	2089 ± 45	3.46	
SK_067	0.61	354	187	0.54	29.54 ± 0.62	0.0463 ± 0.0039	214.6 ± 4.4			
SK_068	0.15	298	113	0.39	24.98 ± 0.48	0.0497 ± 0.0039	253.0 ± 4.8			
SK_069	1.35	209	129	0.63	29.03 ± 0.63	0.0396 ± 0.0074	218.3 ± 4.6			
$SK_0/0$	0.00	124	58 109	0.48	$33.5 / \pm 0.99$	0.0501 ± 0.0042 0.0522 ± 0.0057	189.2 ± 5.5 187.5 ± 4.6			
SK_072	0.08	201	108	0.55	33.69 ± 0.64 33.06 ± 0.67	0.0332 ± 0.0037 0.0497 ± 0.0034	107.3 ± 4.0 102 1 + 3.8			
SK_073	0.00	1482	835	0.58	32.00 ± 0.07 32.60 ± 0.43	0.0497 = 0.0034 0.0599 ± 0.0013	192.1 = 3.6 194.8 ± 2.6			discordant
SK_074	0.72	178	128	0.74	62.66 ± 1.95	0.0549 ± 0.0100	102.1 ± 3.1			discordunt
SK_075	0.33	177	78	0.45	34.51 ± 0.89	0.0441 ± 0.0054	184.1 ± 4.7			
SK_076	0.05	844	114	0.14	2.94 ± 0.05	0.1177 ± 0.0014	1886.6 ± 25.8	1922 ± 21	1.84	
SK_077	0.00	463	35	0.08	3.55 ± 0.05	0.1135 ± 0.0015	1599.0 ± 21.3	1858 ± 24	13.94	
SK_078	0.00	659	248	0.39	29.86 ± 0.51	0.0501 ± 0.0016	212.3 ± 3.6			
SK_079	0.00	486	251	0.53	28.50 ± 0.53	0.0537 ± 0.0023	222.3 ± 4.1			
SK_081	0.24	262	04 124	0.33	22.40 ± 0.32 32.20 ± 0.65	0.0329 ± 0.0037 0.0444 ± 0.0054	280.9 ± 0.3 106 6 ± 3 0			
SK_082	0.47	202 975	369	0.49	32.29 ± 0.03 18 59 ± 0.30	0.0444 ± 0.0034 0.0503 ± 0.0022	190.0 ± 3.9 337 8 ± 5 4			
SK_083	0.31	706	247	0.36	2.51 ± 0.03	0.0303 ± 0.0022 0.1480 ± 0.0022	2158.1 ± 23.4	2324 ± 26	7.14	
SK 084	0.00	654	48	0.08	3.57 ± 0.06	0.1281 ± 0.0017	1592.5 ± 23.2	2073 ± 24	23.18	discordant
SK_085	0.13	231	109	0.48	55.34 ± 1.66	0.0530 ± 0.0072	115.5 ± 3.4			
SK_086	0.00	105	117	1.14	63.08 ± 2.52	0.0405 ± 0.0087	101.4 ± 4.0			
SK_087	0.97	340	162	0.49	3.07 ± 0.05	0.1144 ± 0.0025	1815.5 ± 23.6	1871 ± 39	2.97	
SK_088	0.40	232	136	0.60	28.01 ± 0.59	0.0520 ± 0.0051	226.1 ± 4.7			
SK_089	0.61	694 485	487	0.72	28.85 ± 0.49	0.0462 ± 0.0036 0.0502 ± 0.0022	219.7 ± 3.6 101.2 ± 2.7			
SK_090	0.00	400 505	158	0.03	33.21 ± 0.03 4.06 ± 0.06	0.0303 ± 0.0022 0.1128 ± 0.0016	171.3 ± 3.7 1418.0 ± 17.2	1846 + 25	23.18	discordant
SK 092	0.00	81	10	0.12	26.87 ± 0.83	0.0491 ± 0.0010	235.6 ± 7.2	10-10-23	23.10	anscondant
SK 093	0.00	299	61	0.21	3.29 ± 0.05	0.1130 ± 0.0017	1711.2 ± 22.1	1849 ± 26	7.45	
SK_094	0.00	671	72	0.11	35.06 ± 0.46	0.0500 ± 0.0017	181.3 ± 2.4			
SK_095	0.00	213	82	0.39	30.78 ± 0.59	0.0547 ± 0.0030	206.1 ± 3.9			
SK_096	0.00	72	43	0.61	64.13 ± 2.73	0.0418 ± 0.0081	99.7 ± 4.2			
SK_097	0.00	388	235	0.62	2.82 ± 0.04	0.1229 ± 0.0015	1958.3 ± 22.5	2000 ± 22	2.08	
SK_098	0.00	688	12	0.02	5.57 ± 0.04	0.1111 ± 0.0014	$16/6.6 \pm 18.1$ 212 2 + 2 2	1819 ± 22	1.83	
SIX 077	0.00	703	040	0.00	27.00 ÷ 0.4/	0.0000 - 0.0010	212.3 - 3.3			

Table A1. Continued.

Table A1. Continued.

Labala	²⁰⁶ Pb _c ⁽¹⁾	U	Th	Th/II	238 I 1/206 DL *(1)	207 ph */206 ph *(1)	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	Disc ⁽²⁾	Domorka
Labels	(%)	(ppm)	(ppm)	1 II/U	U/ PU ()	PO / PO ···	age ⁽¹⁾ (Ma)	age ⁽¹⁾ (Ma)	(%)	Kemarks
SK_100	0.72	553	263	0.49	36.49 ± 0.63	0.0482 ± 0.0040	174.3 ± 2.9			
SK_101	0.04	219	58	0.27	3.16 ± 0.05	0.1126 ± 0.0020	1770.6 ± 22.2	1843 ± 33	3.93	
SK_102	0.00	138	95	0.71	57.56 ± 1.87	0.0412 ± 0.0046	111.0 ± 3.6			
SK_103	0.00	1/3	65 110	0.38	30.32 ± 0.65 31.87 ± 0.67	0.0449 ± 0.0029 0.0477 ± 0.0026	209.2 ± 4.4 100 2 ± 4.1			
SK 104	0.00	155	73	0.31	31.87 ± 0.07 24 75 ± 0.47	0.0477 ± 0.0020 0.0518 ± 0.0051	199.2 ± 4.1 255 4 ± 4 8			
SK 106	0.14	130	52	0.41	36.61 ± 0.98	0.0419 ± 0.0051	173.7 ± 4.6			
SK ¹⁰⁷	0.00	276	41	0.15	3.23 ± 0.04	0.1132 ± 0.0016	1738.9 ± 20.0	1852 ± 25	6.11	
SK_108	0.55	221	135	0.62	30.22 ± 0.64	0.0424 ± 0.0060	209.9 ± 4.3			
SK_109	0.00	598	302	0.52	2.77 ± 0.04	0.1235 ± 0.0015	1987.1 ± 25.9	2008 ± 22	1.04	
SK_110	0.00	90	48	0.55	32.84 ± 1.04	0.0487 ± 0.0054	193.4 ± 6.0	2420 + 20	2 22	
SK_111	0.00	514	334	0.67	2.26 ± 0.03	0.1583 ± 0.0019 0.1142 ± 0.0020	2358.0 ± 23.4	2439 ± 20 1870 ± 21	3.32	
SK_112 SK_113	0.00	108 541	00 378	0.30	3.02 ± 0.03 27 50 ± 0.43	0.1143 ± 0.0020 0.0570 ± 0.0040	1843.7 ± 24.2 230.3 + 3.6	18/0 - 31	1.41	
SK 114	0.10	158	140	0.72	27.30 ± 0.43 30.98 ± 0.77	0.0370 ± 0.0040 0.0464 ± 0.0084	230.3 ± 5.0 204 8 ± 5.0			
SK 115	0.00	1917	668	0.36	27.56 ± 0.38	0.0500 ± 0.0010	229.7 ± 3.1			
SK ⁻ 116	0.00	320	228	0.73	33.53 ± 0.63	0.0488 ± 0.0023	189.5 ± 3.5			
SK_117	0.00	1714	1108	0.66	29.40 ± 0.39	0.0486 ± 0.0011	215.7 ± 2.8			
SK_118	0.97	171	98	0.59	34.32 ± 0.87	0.0382 ± 0.0068	185.1 ± 4.6			
SK_119	0.00	445	129	0.30	29.14 ± 0.52	0.0525 ± 0.0023	217.5 ± 3.8	2122 ± 42	5 5 1	
SK_120	0.00	64	40	0.65	2.72 ± 0.04	0.1325 ± 0.0033	2015.5 ± 28.1	2133 ± 42	5.51	
SK 121	0.00	243	42 157	0.71	01.01 ± 2.74 24.08 ± 0.43	0.0332 ± 0.0079 0.0471 ± 0.0053	104.0 ± 4.7 262.3 ± 4.6			
SK 123	0.41	423	367	0.89	24.00 = 0.43 33.64 ± 0.63	0.0471 = 0.0053 0.0509 ± 0.0050	188.8 ± 3.5			
SK 124	0.34	647	266	0.42	32.28 ± 0.51	0.0475 ± 0.0028	196.7 ± 3.1			
SK_125	0.00	983	1550	1.62	2.79 ± 0.04	0.1262 ± 0.0012	1972.4 ± 21.4	2047 ± 16	3.64	
SK_126	0.27	1014	263	0.27	35.66 ± 0.51	0.0485 ± 0.0019	178.3 ± 2.5			
SK_127	0.00	1762	615	0.36	18.41 ± 0.25	0.0538 ± 0.0009	341.0 ± 4.5			
SK_128	1.18	235	212	0.92	24.22 ± 0.45	0.0470 ± 0.0062	260.8 ± 4.8			
SK_129 SK_130	0.15	897 244	347	0.40	30.85 ± 0.52 3.17 ± 0.05	0.0489 ± 0.0023 0.1116 ± 0.0016	205.0 ± 3.4 1766 6 ± 23.7	1826 ± 26	3 25	
SK_131	0.00	390	25	0.39	36.87 ± 0.62	0.0514 ± 0.0010	1700.0 ± 23.7 1725 ± 2.9	1820 - 20	5.25	
SK 131	0.00	201	91	0.46	31.09 ± 0.66	0.0575 ± 0.0033	204.1 ± 4.3			discordant
SK ¹³³	0.00	52	27	0.53	23.72 ± 0.86	0.0495 ± 0.0056	266.2 ± 9.4			
SK_134	0.01	302	59	0.20	3.21 ± 0.05	0.1160 ± 0.0020	1748.8 ± 23.0	1897 ± 30	7.81	
SK_135	0.00	493	326	0.68	29.47 ± 0.53	0.0523 ± 0.0019	215.1 ± 3.8			
SK_136	0.00	139	86	0.64	35.23 ± 0.92	0.0466 ± 0.0037	180.4 ± 4.6			
SK_137	0.00	383	134	0.36	25.77 ± 0.43	0.0484 ± 0.0019 0.1018 ± 0.0017	245.4 ± 4.0	1650 ± 20	51 01	diacondent
SK 130	0.00	110	79	0.23	7.38 ± 0.11 35.53 ± 0.92	0.1018 ± 0.0017 0.0486 ± 0.0047	798.9 ± 10.8 179.0 ± 4.6	1039 - 30	31.84	discordant
SK 140	0.00	573	99	0.18	361 ± 0.04	0.0400 ± 0.0047 0.1305 ± 0.0019	177.0 = 4.0 1575.2 ± 16.7	2106 ± 26	25.20	discordant
SK 141	0.00	188	112	0.61	33.35 ± 0.88	0.0463 ± 0.0034	190.4 ± 4.9	2100 20	20.20	aiseoraant
SK ⁻ 142	0.10	217	57	0.27	32.35 ± 0.71	0.0494 ± 0.0047	196.2 ± 4.2			
SK_143	0.12	510	288	0.58	30.08 ± 0.54	0.0509 ± 0.0044	210.8 ± 3.7			
NN_001	0.43	282	106	0.39	35.05 ± 0.82	0.0532 ± 0.0043	181.3 ± 4.2		-	
NN_002	0.08	417	64	0.16	2.78 ± 0.06	0.1373 ± 0.0022	1978.4 ± 34.9	2195 ± 27	9.87	
NN_003	2.70	316	434	1.41	34.93 ± 0.98	0.0389 ± 0.0111	182.0 ± 5.0 106.5 ± 6.4			
NN 005	0.20	103	96	0.69	32.31 ± 1.00 2 85 ± 0.06	0.0409 ± 0.0124 0.1333 ± 0.0034	190.3 ± 0.4 1938 0 + 32 9	2143 ± 44	9.57	
NN 006	0.29	127	59	0.47	26.41 ± 0.71	0.0531 ± 0.0058	239.6 ± 6.3	2145 - 44).51	
NN 007	1.24	166	129	0.80	25.44 ± 0.58	0.0401 ± 0.0065	248.5 ± 5.6			
NN_008	0.00	348	123	0.36	3.21 ± 0.06	0.1164 ± 0.0020	1746.7 ± 29.0	1903 ± 31	8.21	
NN_009	0.00	819	440	0.55	15.75 ± 0.26	0.0556 ± 0.0014	396.9 ± 6.4			
NN_010	0.45	157	157	1.03	3.49 ± 0.06	0.1091 ± 0.0049	1623.3 ± 24.3	1785 ± 80	9.06	1. 1 .
NN_011	0.93	1125	453	0.41	4.21 ± 0.06	0.1113 ± 0.0016	$13/3.1 \pm 1/.4$	1822 ± 25	24.64	discordant
ININ_012	0.38	289 228	54 87	0.14	3.20 ± 0.03 35.12 ± 0.80	0.1105 ± 0.0018 0.0479 ± 0.0022	$1/22.3 \pm 20.9$ 181.0 ± 4.1	1904 - 28	9.55	
NN 014	0.00	$\frac{230}{217}$	172	0.57	33.12 ± 0.00 29 31 ± 0 77	0.0479 ± 0.0033 0.0466 ± 0.0077	2163 ± 56			
NN 015	0.71	244	114	0.48	34.48 ± 0.86	0.0459 ± 0.0056	184.3 ± 4.5			
NN 016	0.00	475	209	0.45	16.57 ± 0.27	0.0552 ± 0.0017	377.7 ± 5.9			
NN_017	0.06	326	31	0.10	3.16 ± 0.04	0.1143 ± 0.0016	1772.1 ± 20.7	1870 ± 26	5.23	
NN_018	0.09	592	49	0.09	3.35 ± 0.04	0.1133 ± 0.0014	1683.2 ± 19.4	1854 ± 21	9.21	
NN_019	0.44	142	44	0.32	32.57 ± 0.80	0.0471 ± 0.0060	194.9 ± 4.7			
NN_020	0.00	41	34	0.86	24.61 ± 0.93	0.0460 ± 0.0074	256.8 ± 9.5			
NN_021	0.24	3/6	148	0.40	58.84 ± 0.91	$0.04/3 \pm 0.0045$	163.9 ± 3.8			

					10010	m. commueu.				
T 1 1	²⁰⁶ Pb ⁽¹) U	Th		238 t (206 pt *(1)	20751 * /20651 *(1)	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	Disc ⁽²⁾	D 1
Labels	(%)	(ppm)	(ppm)	Th/U	250U/200Pb (1)	207 Pb 7200 Pb (1)	age ⁽¹⁾ (Ma)	age ⁽¹⁾ (Ma)	(%)	Remarks
NN 022	0.07	377	15	0.04	28.48 ± 0.55	0.0502 ± 0.0026	2224 ± 42			
NN 023	3 70	33	23	0.04	20.46 ± 0.00 21 56 ± 0.93	0.0302 ± 0.0020 0.0349 ± 0.0183	222.4 ± 4.2 292 3 + 12 4			
NN 024	0.28	633	346	0.70	21.30 ± 0.53 38 10 ± 0.59	0.0347 ± 0.0133 0.0447 ± 0.0034	252.3 = 12.4 167 0 ± 2 5			
NN 025	0.12	138	67	0.50	30.08 ± 0.74	0.0521 ± 0.0067	210.8 ± 5.1			
NN_026	0.00	387	152	0.40	37.28 ± 0.72	0.0484 ± 0.0024	170.6 ± 3.2			
NN 027	0.20	56	18	0.32	22.10 ± 0.71	0.0574 ± 0.0091	285.3 ± 9.0			
NN 028	0.00	125	90	0.74	23.85 ± 0.63	0.0445 ± 0.0041	264.8 ± 6.8			
NN 029	0.00	113	48	0.44	30.79 ± 0.85	0.0552 ± 0.0052	206.0 ± 5.6			
NN 030	0.00	503	59	0.12	3.25 ± 0.05	0.1127 ± 0.0014	1728.2 ± 23.4	1844 ± 22	6.28	
NN_031	0.13	153	86	0.58	2.27 ± 0.04	0.1623 ± 0.0037	2357.0 ± 38.2	2481 ± 38	5.00	
NN_032	0.00	77	42	0.56	25.96 ± 0.86	0.0638 ± 0.0069	243.7 ± 8.0			
NN 033	0.00	1129	88	0.08	3.83 ± 0.06	0.1107 ± 0.0013	1494.8 ± 21.0	1813 ± 21	17.55	discordant
NN_034	1.27	135	108	0.82	27.35 ± 1.00	0.0464 ± 0.0098	231.5 ± 8.3			
NN 035	0.44	187	116	0.64	65.63 ± 2.19	0.0561 ± 0.0120	97.5 ± 3.2			
NN_036	0.80	429	201	0.48	3.15 ± 0.05	0.1068 ± 0.0033	1778.0 ± 22.4	1747 ± 55	-1.77	
NN_037	0.08	133	114	0.88	2.64 ± 0.05	0.1593 ± 0.0040	2073.4 ± 32.4	2449 ± 42	15.34	discordant
NN_038	0.00	826	551	0.68	36.45 ± 0.86	0.0501 ± 0.0022	174.5 ± 4.0			
NN_039	2.75	92	74	0.82	33.36 ± 1.32	0.0412 ± 0.0172	190.4 ± 7.4			
NN_040	0.00	622	200	0.33	27.16 ± 0.57	0.0513 ± 0.0022	233.1 ± 4.8			
NN_041	0.00	491	361	0.75	35.33 ± 0.74	0.0569 ± 0.0028	179.9 ± 3.7			discordant
NN_042	0.34	352	342	1.00	25.51 ± 0.56	0.0475 ± 0.0071	247.9 ± 5.3			
NN_043	0.45	46	26	0.57	25.07 ± 1.25	0.0694 ± 0.0167	252.2 ± 12.4			
NN_044	1.54	126	75	0.61	27.40 ± 0.83	0.0426 ± 0.0092	231.0 ± 6.9			
NN_045	0.35	516	310	0.62	17.03 ± 0.32	0.0528 ± 0.0038	367.8 ± 6.7			
NN_046	1.06	89	74	0.85	27.85 ± 1.15	0.0603 ± 0.0139	227.4 ± 9.3			
NN_047	0.00	401	183	0.47	27.46 ± 0.72	0.0554 ± 0.0029	230.6 ± 5.9			
NN_048	2.27	324	143	0.45	34.82 ± 0.79	0.0660 ± 0.0064	182.5 ± 4.1			discordant
NN_049	0.05	724	464	0.66	26.59 ± 0.51	0.0498 ± 0.0035	238.0 ± 4.5			
NN_050	0.58	244	1/2	0.72	$35.4 / \pm 0.86$	$0.0483 \pm 0.00/3$	$1/9.2 \pm 4.3$	2040 ± 21	11.01	
NN_051	0.30	158	08	0.44	2.02 ± 0.04	0.2155 ± 0.0043	2397.7 ± 42.3 172.0 ± 2.7	2949 - 31	11.91	
NN 052	0.30	700	180	0.40	30.77 ± 0.80 20.47 ± 0.62	0.0480 ± 0.0041 0.0524 ± 0.0022	$1/5.0 \pm 5.7$ 215.1 ± 4.5			
NN 054	0.00	204	169	0.24	29.47 ± 0.02 24.22 ± 0.84	0.0324 ± 0.0022 0.0540 ± 0.0025	213.1 ± 4.3 185 1 + 4 4			
NN 055	0.00	504	473	0.54	34.33 ± 0.04 23.88 ± 0.47	0.0340 ± 0.0033 0.0490 ± 0.0028	163.1 ± 4.4 264.5 ± 5.1			
NN 056	1 34	141	89	0.55	23.86 = 0.47 32.90 ± 1.11	0.0490 = 0.0028 0.0492 ± 0.0128	103.0 ± 6.4			
NN 057	0.00	192	154	0.05	32.90 = 1.11 31.32 ± 0.91	0.0472 = 0.0120 0.0476 ± 0.0048	202.6 ± 5.8			
NN 058	0.00	312	117	0.32	25.61 ± 0.50	0.0470 = 0.0040 0.0533 ± 0.0046	202.0 ± 3.0 246.9 ± 4.7			
NN_059	0.08	136	56	0.42	24.07 ± 0.64	0.0510 ± 0.0070	262.4 ± 6.8			
NN_060	0.00	140	84	0.61	24.88 ± 0.60	0.0527 ± 0.0049	254.0 ± 6.0			
NN_061	0.00	235	141	0.62	24.90 ± 0.54	0.0506 ± 0.0033	253.9 ± 5.4			
NN 062	0.00	368	150	0.42	36.85 ± 0.81	0.0438 ± 0.0029	172.6 ± 3.8			
NN 063	0.71	424	174	0.42	31.87 ± 0.64	0.0494 ± 0.0046	199.2 ± 4.0			
NN 064	0.00	290	176	0.62	3.19 ± 0.05	0.1150 ± 0.0020	1759.0 ± 23.6	1881 ± 31	6.49	
NN_065	0.00	307	96	0.32	37.07 ± 1.01	0.0507 ± 0.0038	171.6 ± 4.6			
NN 066	0.00	93	68	0.75	23.39 ± 0.84	0.0539 ± 0.0056	269.8 ± 9.5			
NN_067	2.10	1333	676	0.52	24.94 ± 0.40	0.0455 ± 0.0029	253.4 ± 4.0			
NN 068	0.00	91	51	0.57	60.02 ± 2.66	0.0476 ± 0.0071	106.5 ± 4.7			
NN_069	0.22	120	89	0.76	26.11 ± 0.79	0.0443 ± 0.0093	242.3 ± 7.2			
NN_070	0.00	186	180	0.99	29.70 ± 0.74	0.0490 ± 0.0036	213.5 ± 5.3			
NN_071	0.33	371	145	0.40	32.35 ± 0.70	0.0479 ± 0.0042	196.2 ± 4.2			
NN_072	0.76	255	75	0.30	3.06 ± 0.05	0.1356 ± 0.0027	1822.6 ± 28.3	2173 ± 34	16.12	discordant
NN_073	0.38	698	508	0.75	31.67 ± 0.62	0.0443 ± 0.0047	200.4 ± 3.8			
NN_074	0.00	909	120	0.14	3.06 ± 0.04	0.1140 ± 0.0014	1825.3 ± 20.7	1866 ± 21	2.18	
NN_075	0.00	114	77	0.70	25.25 ± 0.81	0.0471 ± 0.0041	250.4 ± 7.8			
NN_076	0.27	84	53	0.65	28.33 ± 1.02	0.0457 ± 0.0120	223.6 ± 7.9			
NN_077	0.13	691	314	0.47	31.63 ± 0.54	0.0476 ± 0.0035	200.6 ± 3.3	1040 - 22	4.00	
NN_078	0.01	337	63	0.19	3.19 ± 0.06	0.1129 ± 0.0021	$1/56.0 \pm 26.7$	1848 ± 33	4.98	
$NN_0/9$	0.00	178	94	0.54	24.42 ± 0.61	0.0486 ± 0.0040	258.7 ± 6.3			
ININ_080	0.00	339	35/	1.02	$31.0 / \pm 0.03$	0.0400 ± 0.0022	200.4 ± 3.9			
ININ_U81	1.3/	3/8 1/1	101	0.44	33.18 ± 0.62	0.0428 ± 0.0033	191.4 ± 3.3 102.4 ± 5.2			
NN 092	0.49	141 62	118	0.80	52.96 ± 0.91 30.78 ± 1.42	$0.0313 \pm 0.009/$ 0.0627 ± 0.0122	192.0 ± 3.2 206 1 ± 0.2			
NN 094	0.04	511	52 119	0.32	30.70 ± 1.42 38 40 ± 0.80	0.0027 ± 0.0132 0.0472 + 0.0050	$200.1 \div 9.3$ 165 2 + 2 9			
NN 085	2.23 0.00	32/	106	0.24	30.77 ± 0.07 3 07 ± 0 05	$0.0+72 \div 0.0039$ 0.1128 + 0.0019	$103.3 \div 3.0$ $1818.1 \div 32.6$	1845 ± 20	1 46	
NN 086	0.00	<u>456</u>	216	0.00	1618 ± 0.05	0.1120 ± 0.0010 0.0524 ± 0.0010	3865 ± 57	10+3 - 27	1.40	
111_000	0.05	-1.50	210	0.72	10.10 - 0.23	0.052 - 0.0051	500.5 - 5.7			

Table A1. Continued.

Table A1. Continued.

	206 ph (1)	Ī	Th				238I1/206pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	Disc ⁽²⁾	
Labels	(%)	(nnm)	(nnm)	Th/U	$^{238}\text{U}/^{206}\text{Pb}^{*(1)}$	207 Pb*/ 206 Pb*(1)	$age^{(1)}$ (Ma)	$age^{(1)}$ (Ma)	(%)	Remarks
	(70)	(ppm)	(ppm)				age (ivia)	age (ivia)	(70)	
NN_087	0.08	592	174	0.30	31.49 ± 0.54	0.0483 ± 0.0031	201.6 ± 3.4			
NN_088	0.00	242	84	0.36	3.08 ± 0.05	0.1140 ± 0.0019	1813.9 ± 23.3	1865 ± 30	2.74	
NN_089	0.00	157	78	0.51	32.18 ± 0.78	0.0534 ± 0.0047	197.3 ± 4.7			
NN_090	0.00	245	91	0.38	28.56 ± 0.52	0.0460 ± 0.0029	221.8 ± 3.9			
NN_091	2.63	706	399	0.58	34.06 ± 0.56	0.0459 ± 0.0042	186.5 ± 3.0			
NN_092	0.00	248	61	0.25	3.82 ± 0.05	0.1119 ± 0.0019	1497.9 ± 17.0	1831 ± 31	18.19	discordant
NN_093	0.19	96	68	0.72	23.87 ± 0.63	0.0489 ± 0.0090	264.6 ± 6.8			
NN_094	0.00	198	89	0.46	3.02 ± 0.04	0.1143 ± 0.0016	1844.5 ± 23.5	1869 ± 26	1.31	
NN_095	0.40	138	62	0.46	30.08 ± 0.75	0.0411 ± 0.0066	210.8 ± 5.2			
NN_096	0.00	557	307	0.57	33.81 ± 0.56	0.0484 ± 0.0020	187.9 ± 3.1			
NN_097	0.00	186	80	0.44	37.29 ± 1.03	0.0540 ± 0.0041	170.6 ± 4.6			
NN_098	0.00	230	144	0.64	34.23 ± 0.76	0.0553 ± 0.0030	185.6 ± 4.0			
NN 099	0.14	294	128	0.45	33.15 ± 0.75	0.0482 ± 0.0055	191.6 ± 4.3			
NN ¹⁰⁰	0.00	201	230	1.17	52.00 ± 1.61	0.0574 ± 0.0054	122.8 ± 3.8			
NN ¹⁰¹	0.19	128	77	0.62	24.44 ± 0.57	0.0500 ± 0.0077	258.5 ± 5.9			
NN ¹⁰²	0.00	268	90	0.34	30.17 ± 0.60	0.0519 ± 0.0030	210.2 ± 4.1			
NN ¹⁰³	0.11	543	229	0.43	14.99 ± 0.24	0.0536 ± 0.0029	416.4 ± 6.5			
NN ⁻¹⁰⁴	0.00	210	47	0.23	2.93 ± 0.05	0.1138 ± 0.0020	1895.3 ± 26.3	1862 ± 31	-1.79	
NN ¹⁰⁵	0.00	453	217	0.49	3.11 ± 0.04	0.1158 ± 0.0016	1798.1 ± 22.3	1893 ± 25	5.01	
NN ¹⁰⁶	0.00	138	61	0.45	23.76 ± 0.47	0.0535 ± 0.0030	265.8 ± 5.1			
NN 107	0.41	429	164	0.39	35.89 ± 0.65	0.0468 ± 0.0039	177.2 ± 3.2			
NN 108	0.04	382	250	0.67	3.66 ± 0.06	0.1092 ± 0.0025	1555.5 ± 21.5	1788 ± 41	13.00	
NN 109	0.00	19	200	0.40	23.27 ± 1.28	0.0484 ± 0.0111	271.3 ± 14.6	1700 11	10.00	
NN 110	0.60	134	55	0.42	30.63 ± 0.96	0.0434 ± 0.0071	207.1 ± 6.4			
NN 111	0.00	226	107	0.48	3.01 ± 0.05	0.0138 ± 0.0018	1847.5 ± 26.7	1863 ± 29	0.83	
NN 112	0.00	399	46	0.10	3.01 ± 0.03 3.14 ± 0.04	0.1102 ± 0.0016	107798 ± 20.7	1804 ± 26	1 34	
NN 113	0.15	169	47	0.12	57.86 ± 2.12	0.0532 ± 0.0010	1105 ± 40	1001-20	1.5 1	
NN 114	0.25	293	120	0.20	24.69 ± 0.51	0.0332 = 0.0003 0.0486 ± 0.0043	255.9 ± 5.2			
NN 115	0.20	534	273	0.52	21.09 = 0.01 35.01 ± 0.67	0.0100 = 0.0019 0.0510 ± 0.0048	1815 + 34			
NN 116	0.00	872	74	0.02	3.01 = 0.07 3.23 ± 0.05	0.0310 = 0.0040 0.1206 ± 0.0016	101.3 = 3.4 1737.8 + 23.0	1965 ± 24	11 56	
NN 117	0.11	124	58	0.09	31.92 ± 0.05	0.1200 = 0.0010 0.0441 ± 0.0078	1737.0 - 23.0 198.9 + 5.8	1705 - 24	11.50	
NN 118	0.05	271	170	0.40	36.74 ± 0.86	0.0441 = 0.0070 0.0453 ± 0.0062	173.1 ± 4.0			
NN 110	0.00	271	170	0.05	30.74 = 0.80 34.51 ± 0.85	0.0453 = 0.0002 0.0464 ± 0.0040	173.1 - 4.0 184.1 + 4.4			
NN 120	0.00	1/2	85	0.70	34.51 ± 0.05 3.00 ± 0.06	0.0404 ± 0.0040 $0.11/3 \pm 0.0030$	104.1 - 4.4 1800.3 + 20.6	1871 ± 47	3 30	
NN 121	0.09	164	70	0.01	3.09 ± 0.00 2.62 ± 0.05	0.1143 ± 0.0030 0.1330 ± 0.0022	1809.3 ± 29.0 2083 7 + 32 0	10/1 - 4/ 2151 + 28	3.50	
NN 122	0.00	353	135	0.30	2.02 ± 0.03 32.16 ± 0.67	0.1339 ± 0.0022 0.0572 ± 0.0028	2083.7 ± 32.0 107 $A \pm 4.0$	2131 - 20	5.15	discordant
NN 122	0.00	12	20	0.39	32.10 ± 0.07 25.02 ± 1.00	0.0572 ± 0.0028 0.0566 ± 0.0077	197.4 - 4.0 252.6 + 0.0			uiscoittain
NIN_123	1.26	42	2.0	0.40	25.02 ± 1.00 16.28 ± 0.24	0.0500 ± 0.0077	232.0 ± 9.9			
NNI 124	1.20	9/1 105	122	0.50	10.36 ± 0.24 20.00 ± 0.72	0.0344 ± 0.0019 0.0521 ± 0.0025	362.0 ± 3.3 205.2 ± 4.7			
NN 123	0.00	649	123	1.04	30.90 ± 0.72 20.50 ± 0.52	0.0321 ± 0.0033 0.0406 ± 0.0010	203.5 ± 4.7 214.0 ± 2.8			
NIN_120	0.00	2280	210	0.14	29.30 ± 0.32 16.74 ± 0.26	0.0490 ± 0.0019 0.0527 ± 0.0010	214.9 ± 5.0 274.0 ± 5.7			
ININ_12/	0.15	2209	270	0.14	10.74 ± 0.20 22.15 ± 0.64	0.0337 ± 0.0010 0.0452 ± 0.0048	$3/4.0 \pm 3.7$			
ININ_128	0.88	443	270	0.62	33.13 ± 0.04 2.15 ± 0.05	0.0433 ± 0.0048 0.1142 ± 0.0015	191.0 ± 3.0 1776.0 ± 32.7	1060 ± 24	1 07	
NN 129	0.00	420	214	0.31	3.13 ± 0.03	0.1142 ± 0.0013 0.0485 ± 0.0027	$1//0.9 \pm 22.7$	1000 - 24	4.0/	
NN_130	0.00	202	109	0.43	30.38 ± 0.68	0.0485 ± 0.0027	208.8 ± 4.0			
ININ_131	0.17	118	02	0.54	23.55 ± 0.63	0.0444 ± 0.0062	208.1 ± 7.0			
ININ_132	0.00	213	200	0.42	23.04 ± 0.30	0.0401 ± 0.0023	240.0 ± 3.3			
ININ_133	0.09	813	308	0.39	39.01 ± 0.80	0.0520 ± 0.0029	103.2 ± 3.3			
NN_134	0.10	120	81	0.69	31.05 ± 0.91	0.0510 ± 0.0083	200.5 ± 5.7			
NN_133	0.00	/5	39	0.53	34.24 ± 1.12	0.0499 ± 0.0058	185.6 ± 6.0			
NN_130	1.36	221	151	0.70	25.36 ± 0.53	0.0431 ± 0.0062	249.3 ± 5.1			
NN_13/	0.00	015	338	0.60	26.23 ± 0.47	0.0502 ± 0.0018	241.2 ± 4.2			
NN_138	0.38	153	80	0.58	34.09 ± 0.94	0.0552 ± 0.0083	186.4 ± 5.1	1007 ± 50	16.60	1. 1. (
ININ_139	0.07	13/	105	0.69	$3./3 \pm 0.06$	0.1122 ± 0.0033	1552.1 ± 21.4	$183 / \pm 53$	10.60	discordant
ININ_140	0.66	438	287	0.67	35.29 ± 0.68	0.0445 ± 0.0046	180.2 ± 3.4			
NN_141	2.50	1426	624	0.45	32.56 ± 0.51	0.0513 ± 0.0031	195.0 ± 3.0			1. 1
NN_142	0.00	68	31	0.47	25.65 ± 0.75	$0.06/1 \pm 0.00/2$	246.6 ± 7.1			discordant
NN_143	0.29	168	165	1.01	24.35 ± 0.58	0.0508 ± 0.0077	259.4 ± 6.0			
NN_144	0.00	139	112	0.82	23.72 ± 0.65	0.0464 ± 0.0032	266.2 ± 7.2	1000 : 25	1.10	
NN_145	0.20	701	373	0.55	2.74 ± 0.03	0.1215 ± 0.0019	2003.5 ± 21.2	1980 ± 27	- 1.19	
NN_146	0.00	253	84	0.34	2.96 ± 0.05	0.1107 ± 0.0018	1875.5 ± 25.2	1811 ± 30	-3.56	
NN_147	0.00	286	126	0.45	16.12 ± 0.30	0.0563 ± 0.0022	388.0 ± 7.0	100		
NN_148	0.00	209	211	1.03	3.56 ± 0.06	0.1121 ± 0.0021	1595.8 ± 23.9	1835 ± 34	13.04	

Errors are 1-sigma; Pb_c and Pb* indicate the common and radiogenic portions, respectively.
(1) Common Pb corrected by assuming ²⁰⁶Pb/²³⁸U-²⁰⁸Pb/²³²Th age-concordance
(2) The degree of discordance for an analyzed spot indicates the chronological difference between the two ages determined by Pb-Pb and U-Pb methods, and is defined as {1 - (²³⁸U/²⁰⁶Pb* age)/(²⁰⁷Pb*/²⁰⁶Pb* age)} × 100 (%) (e.g., Song *et al.*, 1996).