

自然と科学の情報誌
[ミルシル]

No. 2 2019







No. **2** 2019 Vol. 12

#### 「milsil(ミルシル)」について

'milsil(ミルシル)'の'mil(ミル)'は「見てみる」「聞いて みる」「やってみる」の「ミル」。そのような「ミル」から、 新たな、そして豊かな 'sil (シル = 知る)' が得られるでしょう。 この雑誌とともに、皆様が楽しい「ミルシル」体験をされ ることを願っています。

#### ONTENTS

#### [特集] DNAと保存科学で生物標本を活かす

- 3 博物館の生物標本の意義とさらなる活用 長太 伸章 (国立科学博物館標本資料センター特定研究員) 細矢 剛 (国立科学博物館植物研究部菌類・藻類研究グループ長/ 標本資料センター副コレクションディレクター)
- 6 標本のDNA解析と保存科学 長太 伸章 (国立科学博物館標本資料センター特定研究員)
- 8 絶滅種ニホンカワウソの系統関係 博物館標本から調べられること
  - 和久 大介 (東京農業大学農学部野生動物学研究室嘱託助教)
- 👊 絶滅種? 外来種? 80年前の標本から イワキアブラガヤの由来を探る
  - 兼子 伸吾 (福島大学共生システム理工学類准教授)
- 14 標本から見えた草地性チョウ類の盛衰 中游 直之 (東京大学大学院総合文化研究科 日本学術振興会特別研究員 PD)



義が、1934年に栽培していた個体から 作成した標本(福島大学附属図書館貴重 資料保管室所蔵)。1925年に採取され、 1939年以降に絶滅。80年前の標本の DNAから、北米からの移入種であった こと、なかでも近縁種と交雑した系統で あったことなどがわかりました。

写真提供: 里沢高秀

- Focus 科学者の探究心にせまる 短い年月の間に起こる生き物の進化を検証! 基礎学問の研究成果を農業の現場で役立てる
  - 深野 祐也(東京大学大学院農学生命科学研究科附属生態調和農学機構助教)
- 標本の世界
  - 小さな化石が語る地球の気候変動

**久保田 好美**(国立科学博物館地学研究部環境変動史研究グループ研究員)

- 22 真実を見抜く技術! 第1回 知っていることを暴く!? ポリグラフ検査でわかること 小川 時洋 (科学警察研究所法科学第四部情報科学第一研究室長) 取材協力 松田いづみ(科学警察研究所法科学第四部情報科学第一研究室主任研究官)取材協力
- 26 親子で遊ぼう! 科学冒険隊 #67 バランス ~重心って何だろう?~ 小島 俊介 (ワークショッププロデューサー) 監修
- DNAを知る 最終回 DNAの変化と生物の進化 ~ DNAと生き物の進化、そして環境とのかかわり~
- **NEWS&TOPICS** 世界の科学ニュース & おもしろニュースを 10分で
- milsilカフェ/編集後記/定期購読のお知らせ/次号予告



表紙写直

DNAなどさまざまな情報の活用が進んで いる収蔵標本群。左上: タダマイマイ(国 立科学博物館収蔵標本)。右 F: オガサワ ラヨシノボリ(国立科学博物館収蔵標本)。 中央左:コヒョウモンモドキ成虫(写真提 供:中濱直之)。中央右:イワキアブラガ ヤ(ト部参照)。下:ニホンカワウソ(高 知県のいち動物公園所蔵)。

## 次号より milsil の誌面をリニューアル!

- 文字サイズを見直して読みやすくします。
- ●イラストや写真などを効果的に活用し、さまざまな科学情報をよりわかりやすく紹介します。
- 特集の冒頭には、特集テーマの概説や基礎知識の解説を盛り込みます。



# \*\*DNAと保存科学で

博物館には膨大な生物標本が収蔵されています。近年、この生物標本のDNA解析が行われるよう になり、さまざまな研究が進んでいます。この特集では、標本のDNA解析に対する標本の安定的 な保管や、さらなる活用をめざす保存科学の役割と、標本のDNA解析によって何がわかるのかに ついて紹介します。

# 博物館の生物標本の意義とさらなる活用

博物館に収蔵されている生物の標本はその生物の存在の物的証 拠となるだけでなく、従来と違う観点で再利用することによっ て、新たな情報を引き出すことができます。したがって、標本 の情報を維持したままいつまでも保管していくことが博物館の 重要な役割の一つです。さらに、最近の技術の発達に伴ってよ り多くの情報が利用できるようになってきました。



## 長太 伸章 はがた のぶあき 国立科学博物館標本資料センター特定研究員

2008年京都大学大学院理学研究科博士課程修 了。博士 (理学)。京都大学研究員,東北大学 GCOE助教などを経て、2015年より現職。 保存科学のうち標本の保管法や標本DNAの解 析法などの研究を行っている。



☆・写直 細矢 剛 ほそやつよし 国立科学博物館植物研究部菌類・藻類研究グループ長 標本資料センター副コレクションディレクター

1988年筑波大学大学院生物科学研究科中退 博士 (理学)。製薬会社の研究員を経て2004 年より国立科学博物館植物研究部。現在、菌類・ 藻類研究グループ長、兼標本資料センター副コ レクションディレクター。専門は菌類学だが、自 然史標本の情報発信に関する活動も行っている。

学だけではなく、進化学や生態学、古生物学や地質学などを 含む生物学や地球科学などの多くの科学分野で研究の根幹を 支える重要な情報として活用されています。

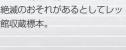
#### 標本に眠っている情報と標本の保管

標本に眠っている情報をすべて取り出すことができればよ り多くの研究が進みます。しかし、博物館に収蔵されている あらゆる標本から、必ずしもすべての情報が取り出せるかとい うとそうではありません。標本は長期にわたって保管できるよ



図1 タダマイマイ Satsuma tadai

沖縄の尖閣諸島の固有種。尖閣諸島は複雑な事情により40年以上調査がされてい ないが、この標本によって過去には尖閣諸島にいたという情報が得られる。現在の 尖閣諸島は環境が悪化していると考えられており、絶滅のおそれがあるとしてレッ ドデータブックにも掲載されている。国立科学博物館収蔵標本。


## 標本がもっている価値

国立科学博物館の収蔵品の多くは生物の標本が占めていま す。ではその標本がもっている価値とは何でしょうか? ま ず、標本からは生物の形という情報がわかります。植物や動 物などの生物標本だけではなく化石や岩石などの標本でも、 多くの場合、形がわかることによってその標本が何の種か、 あるいはどの部位であるかを知ることができます。なかには これまで知られている標本とは特徴が一致せず、新種である ことがわかることもあります。形といっても肉眼で見えるも のだけではありません。光学顕微鏡や電子顕微鏡を使うこと でやっと見えるような微細な構造や、切片をつくって解析す る結晶構造なども重要な形質情報です。

次に、標本がもつ重要な情報として標本のラベルがあります。 ラベルにはその標本が得られた場所や日時、採集者などが書か れています。これによって、ある地域にどんな生物が分布して いて、どのような地質であるかといったことを知ることができま す。また、なかなか調査することができない場所でもどんな生 物がいたかを知ることができますし(図1)、恐竜やニホンオオ カミのような絶滅した生物がどこにいつまでいたのかも知るこ とができます。これらの標本は新たに得ることが難しいため、 すでに存在する標本がもっている情報は特に貴重なものです。 このように標本は非常に多くの情報をもっており、その情 報こそが標本の重要な価値の一つです。これらの情報は、生

物の種や岩石の種類などを区別し体系的にまとめていく分類







# ●DNAと保存科学で生物標本を活かす





図2 オガサワラヨシノボリ Rhinogobius ogasawaraensis a:採集し標本作製後すぐに撮影したもの。b:70%エタノールに浸けて1年間、 25℃の標本庫で保管した後に撮影したもの。軟らかいひれなどを含めて形はしっ かり維持されているが、頭部の赤色がほぼなくなっているなど、色彩に関しては多 くの情報が失われている。しかし、aの標本作製後すぐのデジタル画像があるため、 実際に近い色彩の情報が維持されている。国立科学博物館収蔵標本。

うにさまざまな処理をしますが、残念ながらその過程で失わ れていく情報もあるのです。たとえば、生物の標本は形を残し ていくために乾燥させたりエタノールやホルマリンなどの保存 液の中に入れたりして保管しますが、現在の技術では生きて いる当時の色彩をそのまま残した標本を作ることは多くの生 物で困難です(図2)。さらに、標本を保管している際の温度 や湿度、標本を展示する際の照明などが、標本の色彩が失わ れてしまう原因になる場合もあります。ですから、今後は失 われる情報が最小限にとどめられるようにしつつ、標本を将 来にわたって維持する工夫が必要です。このように標本や標 本のもつ情報がどのような条件で失われていくのか、それを 防ぐにはどうしたらよいかを明らかにするのが「保存科学」で す。その成果を利用して、たとえば、保存液の成分の変更といっ た保管方法の改良や、標本の殺菌や殺虫剤の成分や 散布回数 の調整、UVカットガラスなどの活用、標本庫の耐震補強や管 理温度の変更などさまざま対策が取られるにようになり、よ り良い状態で標本を保管する努力がなされています。

また、標本のなかには切断や粉砕、解剖といった破壊を伴 う解析をしないと取り出せない情報もあります。この場合は 標本にダメージを与えることになるため、すべての標本で行 えるわけではありません。博物館では標本の貴重性や、得ら れる情報のメリットと標本を破壊するデメリットを詳細に検 討して解析するかどうかを慎重に判断して調査しています。

#### 標本からさらに情報を取り出す

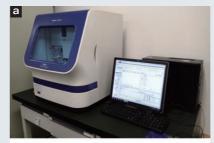
標本から情報を得られるのは標本を作った時や博物館に収

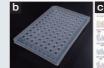
蔵した時だけではありません。古い標本でも、当時は使うこ とのできなかった技術やその後に発展した技術を使うことに よって、新たに多くの情報を得ることができます。そのため、 博物館や大学などの研究機関ではさまざまな機械を導入して 古い標本からも情報の収集が進められています。また、新しい 標本でも最新の技術を取り入れることでより多くの情報を記 録することができるようになっています。たとえばデジタルカメ ラなどのデジタル技術の発達によって、新しい状態の標本を 撮影しておくことで標本の色彩をしっかり記録することがで きるようになりました (図2)。また、顕微鏡の発明と性能向 上によって、肉眼では見ることのできなかった微細な形を調 べることができるようになりました。より細かく見ていくため、  $10^{-6}$ mm  $(1 \, \hat{n} \, \hat{m})$  程度の大きさでも調べることのできる電子 顕微鏡も標本の調査に使われるようになりました。さらに、標 本を破壊せずに標本の内部を調べるため、X線によるレントゲ ンや CTスキャン (コンピュータ断層撮影) も使われています。 これによって化石や骨格標本の内部の構造、岩石に含まれて いる化石や、その化石の内部構造まで調べることができます。 最近では機械の性能が上がり、非常に小さい標本の内部まで 解析できるようになりつつあります。また3Dスキャンやこの 情報を基にした3Dプリンターによる複製標本などで骨格の機 能などの情報を取り出すことも行われています。このように、 博物館などでは最新の技術を取り入れつつ標本の保管と標本 のもつ情報の利用の両立を図っています。これらで得られた 情報のなかには、生物がもっている機能を産業に活かすバイ オミメティクス(生物模倣技術)にも利用されているものが あります。

#### 標本のもつ情報を最大限に活かす

これまで説明してきたように標本は一つ一つが多くの情報 をもっていますが、複数の標本の情報を集めることでさらに 重要な情報を得ることができます。特に生物多様性を考える うえではそれぞれの標本の情報を大量に統合することで、地 球規模の生物多様性や、環境変化などについて研究すること が進められています。そのため、博物館に収蔵されている膨 大な標本資料をデータベース化することが、国立科学博物館 (標本・資料統合データベース、http://db.kahaku.go.jp/ webmuseum/) だけではなく、日本(サイエンスミュー ジアムネット、http://science-net.kahaku.go.ip/) や 世界中の標本 (GBIF (Global Biodiversity Information Facility)、https://www.gbif.org/〕で進んでいます。集積 された標本情報を使うことで、たとえば絶滅した生物がどの ように分布が狭くなり最後はどこにいたのか、といったこと も明らかにできます。また、近年では地球温暖化などの大規 模な環境変化によって生物の分布が急速に変化しています。

これも、標本が得られた時代や場所のデータを積み上げてい き、現在と比較することで調べることができます。

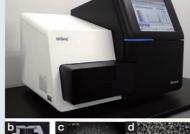

さらに、20世紀の後半から生物の遺伝情報であるDNAを 調べることが可能になってきました。 DNA は非常に多くの情 報をもっているため、特徴的な形質をもつ種がどの種に近い のかや、生物の進化過程などについて強力に研究を進めるこ とができます。これまでは採集してきてすぐの新しい標本を 使うことがほとんどでしたが、最近では遺跡から出土した標 本や博物館などで保管されてきた古い標本の DNA を解析す ることで、日本人の起源など人類の歴史の解明 1,2 や、飛べ ないハト目の1種であるドードーなどの絶滅してしまった種 の系統の解明<sup>3</sup>などが行われています。博物館には日本だけ ではなく世界中から集められた膨大な標本やさまざまな時代 の標本があるため、博物館の標本のDNAを解析することに


よってさらに新しく興味深い情報が得られると期待されてい ます。そして複数の標本がもつ形態や時代、場所、DNA な どの情報に加えて、温度や日照時間、高度などの環境デー タも統合的に解析し、生命現象そのものをより深く理解し ようとする"ミュゼオミクス"という考え方も広がりつつあ ります。

過去に戻ることはできません。過去から集積された標本は、 過去の情報を記録したタイムカプセルとして機能しています。 そして、新しい技術がそこから新しい情報を引き出していま す。博物館は、過去の生物の壮大な歴史を保存する資源庫で もあるのです。 

- Kanzawa-Kiriyama, H. et al.: Journal of Human Genetics, 62, 213-221 (2017)
- 2. Prüfer, K. et al.: Nature, 505, 43-49 (2014)
- 3. Soares, A.E.R. et al.: BMC Evolutionary Biology, 16, 230 (2016)

## DNAを解析する方法










a: 国立科学博物館にあるサンガーシーケンサー。 塩基配列を決定する。 生物標本の DNA 解析からわかること



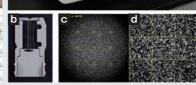



図2 次世代シーケンサーの例

a: 国立科学博物館にある次世代シーケンサー。 b:サンプルを入れる96穴の容器。この機械で b:解析に使う部品。ガラス部の中央に流路があ は24 サンプルを一度に処理し、96 サンプルを り、この中で DNA を解析する。c:解析画像の 4 時間程度で解析する。c: 結果の例。ATGCの 一部。d: その拡大。一つ一つの光点がそれぞ 塩基が色分けされた波形で検出され、これを基に れ別の DNA になっている。このように無数の DNA を一度に解析することができる。

サンガーシーケンサーが普及したことによって、 さまざまな生物のDNAを調べることが可能にな りました。この方法では、プライマー(ゲノムの 特定の場所を指定する、人工的に合成した短い DNA)と酵素を用いて、2つのプライマーの間 のDNAを増幅するPCR (Polymerase Chain Reaction、DNA合成酵素連鎖反応法)という 方法と一緒に使われることがほとんどです。一般 的な機械ではゲノムのうちの約1000 塩基の配 列を同時に最大96個決定することができます (図1)。イメージとしてはPCRによって、ゲノ ムという膨大な文書の中から索引に従って特定 のページの文字列を調べる、という感じでしょ

ところが 1990年代後半から新しい塩基配 列決定法の開発が進み、21世紀に入ると次世 代シーケンサーとよばれる超並列型のシーケン

サーが次々と実用化され普及してきました。2018年現在よく 使われている機械(図2)では約150塩基から600塩基の配列 を 2500 万個決定することができ、大きな機械では約 300 塩基 を 10 億個以上も決定することができます。これらの機械では DNA を短い断片にし、それを網羅的に解析して高性能パソコン やスーパーコンピュータで長い配列を決定していきます。イメー ジとしてはゲノムという文書を丸ごとシュレッダーにかけて、そ の破片を片っ端から調べて元の文章を明らかにするという感じ でしょうか。これらの DNA の塩基配列の決定については本誌 『milsil』の通巻64号(2018年7月1日発行)の連載「DNA を知る | 第4回で詳しく紹介されています。

DNAは4種類の塩基が非常に多く並んで構成されており(ヒ トでは約30億塩基を2セットもっています)、そのなかでは3 つの塩基の並び(配列)が1つのアミノ酸を指定し、DNAで指 定されたさまざまなアミノ酸がつながることで多様なタンパク 質がつくられていきます。そのため、牛物のゲノムはいわば4種 類の文字で書かれた膨大な文書であるといえます。多くの場合、 DNA を調べるということは、この文書の一部またはすべての文字 の並び、すなわち塩基配列 (シーケンス) を決定することを意味 します。塩基配列の決定は1980年のノーベル化学賞の授賞対 象となったサンガー法によって大きく進み、この原理を利用した